Robust Multiobjective Reinforcement Learning Considering Environmental Uncertainties

X He, J Hao, X Chen, J Wang, X Ji… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Numerous real-world decision or control problems involve multiple conflicting objectives
whose relative importance (preference) is required to be weighed in different scenarios …

Deep reinforcement learning-based optimal bidding strategy for real-time multi-participant electricity market with short-term load

C Liu, X Rao, B Zhao, D Liu, Q Wei, Y Wang - Electric Power Systems …, 2024 - Elsevier
This paper aims to address the bidding strategy optimization in the real-time multi-participant
electricity market with short-term load dynamics. In order to avoid the sub-optimal solution …

Safe reinforcement learning using finite-horizon gradient-based estimation

J Dai, Y Yang, Q Zheng, G Pan - arXiv preprint arXiv:2412.11138, 2024 - arxiv.org
A key aspect of Safe Reinforcement Learning (Safe RL) involves estimating the constraint
condition for the next policy, which is crucial for guiding the optimization of safe policy …

Multi-objective reinforcement learning based on nonlinear scalarization and long-short-term optimization

H Wang - Robotic Intelligence and Automation, 2024 - emerald.com
Purpose Many practical control problems require achieving multiple objectives, and these
objectives often conflict with each other. The existing multi-objective evolutionary …

Интеллектуальные робастные контроллеры триботронных конических опор скольжения

ЮН Казаков, ДВ Шутин, ЛА Савин - VESTNIK of Samara …, 2024 - journals.ssau.ru
Триботронные опорные узлы представляют собой мультифизическую систему,
основанную на совокупности гидродинамических, теплофизических, динамических …

[引用][C] Intelligent robust controllers for tribotronic conical fluid film bearings

YN Kazakov, DV Shutin… - Вестник …, 2024 - Samara National Research …