A survey on evolutionary neural architecture search

Y Liu, Y Sun, B Xue, M Zhang, GG Yen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep neural networks (DNNs) have achieved great success in many applications. The
architectures of DNNs play a crucial role in their performance, which is usually manually …

Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review

M Kaveh, MS Mesgari - Neural Processing Letters, 2023 - Springer
The learning process and hyper-parameter optimization of artificial neural networks (ANNs)
and deep learning (DL) architectures is considered one of the most challenging machine …

Evolutionary deep learning: A survey

ZH Zhan, JY Li, J Zhang - Neurocomputing, 2022 - Elsevier
As an advanced artificial intelligence technique for solving learning problems, deep learning
(DL) has achieved great success in many real-world applications and attracted increasing …

Survey on evolutionary deep learning: Principles, algorithms, applications, and open issues

N Li, L Ma, G Yu, B Xue, M Zhang, Y Jin - ACM Computing Surveys, 2023 - dl.acm.org
Over recent years, there has been a rapid development of deep learning (DL) in both
industry and academia fields. However, finding the optimal hyperparameters of a DL model …

A self-adaptive mutation neural architecture search algorithm based on blocks

Y Xue, Y Wang, J Liang, A Slowik - IEEE Computational …, 2021 - ieeexplore.ieee.org
Recently, convolutional neural networks (CNNs) have achieved great success in the field of
artificial intelligence, including speech recognition, image recognition, and natural language …

A survey of swarm and evolutionary computing approaches for deep learning

A Darwish, AE Hassanien, S Das - Artificial intelligence review, 2020 - Springer
Deep learning (DL) has become an important machine learning approach that has been
widely successful in many applications. Currently, DL is one of the best methods of …

A comprehensive survey on optimizing deep learning models by metaheuristics

B Akay, D Karaboga, R Akay - Artificial Intelligence Review, 2022 - Springer
Deep neural networks (DNNs), which are extensions of artificial neural networks, can learn
higher levels of feature hierarchy established by lower level features by transforming the raw …

Weight-sharing neural architecture search: A battle to shrink the optimization gap

L Xie, X Chen, K Bi, L Wei, Y Xu, L Wang… - ACM Computing …, 2021 - dl.acm.org
Neural architecture search (NAS) has attracted increasing attention. In recent years,
individual search methods have been replaced by weight-sharing search methods for higher …

A survey on evolutionary construction of deep neural networks

X Zhou, AK Qin, M Gong, KC Tan - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Automated construction of deep neural networks (DNNs) has become a research hot spot
nowadays because DNN's performance is heavily influenced by its architecture and …

Automatic design of machine learning via evolutionary computation: A survey

N Li, L Ma, T Xing, G Yu, C Wang, Y Wen, S Cheng… - Applied Soft …, 2023 - Elsevier
Abstract Machine learning (ML), as the most promising paradigm to discover deep
knowledge from data, has been widely applied to practical applications, such as …