Vision-language pre-training: Basics, recent advances, and future trends

Z Gan, L Li, C Li, L Wang, Z Liu… - Foundations and Trends …, 2022 - nowpublishers.com
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …

On the opportunities and challenges of foundation models for geospatial artificial intelligence

G Mai, W Huang, J Sun, S Song, D Mishra… - arXiv preprint arXiv …, 2023 - arxiv.org
Large pre-trained models, also known as foundation models (FMs), are trained in a task-
agnostic manner on large-scale data and can be adapted to a wide range of downstream …

Visual instruction tuning

H Liu, C Li, Q Wu, YJ Lee - Advances in neural information …, 2024 - proceedings.neurips.cc
Instruction tuning large language models (LLMs) using machine-generated instruction-
following data has been shown to improve zero-shot capabilities on new tasks, but the idea …

Improved baselines with visual instruction tuning

H Liu, C Li, Y Li, YJ Lee - … of the IEEE/CVF Conference on …, 2024 - openaccess.thecvf.com
Large multimodal models (LMM) have recently shown encouraging progress with visual
instruction tuning. In this paper we present the first systematic study to investigate the design …

Objaverse: A universe of annotated 3d objects

M Deitke, D Schwenk, J Salvador… - Proceedings of the …, 2023 - openaccess.thecvf.com
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and
LAION have propelled recent dramatic progress in AI. Large neural models trained on such …

Eva: Exploring the limits of masked visual representation learning at scale

Y Fang, W Wang, B Xie, Q Sun, L Wu… - Proceedings of the …, 2023 - openaccess.thecvf.com
We launch EVA, a vision-centric foundation model to explore the limits of visual
representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained …

Scaling up gans for text-to-image synthesis

M Kang, JY Zhu, R Zhang, J Park… - Proceedings of the …, 2023 - openaccess.thecvf.com
The recent success of text-to-image synthesis has taken the world by storm and captured the
general public's imagination. From a technical standpoint, it also marked a drastic change in …

Reproducible scaling laws for contrastive language-image learning

M Cherti, R Beaumont, R Wightman… - Proceedings of the …, 2023 - openaccess.thecvf.com
Scaling up neural networks has led to remarkable performance across a wide range of
tasks. Moreover, performance often follows reliable scaling laws as a function of training set …

Open-vocabulary panoptic segmentation with text-to-image diffusion models

J Xu, S Liu, A Vahdat, W Byeon… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies
pre-trained text-image diffusion and discriminative models to perform open-vocabulary …

Sdxl: Improving latent diffusion models for high-resolution image synthesis

D Podell, Z English, K Lacey, A Blattmann… - arXiv preprint arXiv …, 2023 - arxiv.org
We present SDXL, a latent diffusion model for text-to-image synthesis. Compared to
previous versions of Stable Diffusion, SDXL leverages a three times larger UNet backbone …