A nonlinear method of learning neuro-fuzzy models for dynamic control systems
MV Bobyr, SG Emelyanov - Applied Soft Computing, 2020 - Elsevier
The paper describes a new learning algorithm of adaptive neuro-fuzzy inference systems
that is based on the method of areas' ratio (MAR-ANFIS). Using linear and nonlinear …
that is based on the method of areas' ratio (MAR-ANFIS). Using linear and nonlinear …
On alpha-cross-migrativity of t-conorms over fuzzy implications
BW Fang - Fuzzy Sets and Systems, 2023 - Elsevier
As a weaker form of the classical commuting equation, α-cross-migrativity properties
between conjunctive connectives including t-norms, uninorms, and overlap functions have …
between conjunctive connectives including t-norms, uninorms, and overlap functions have …
Generating methods of some classes of uninorms and associated structures
Uninorms are an important class of fuzzy logic connectives that have, so far, neither
generating methods nor algebraic structures. In this work, we attempt to propose some novel …
generating methods nor algebraic structures. In this work, we attempt to propose some novel …
Исследование устойчивости нейро-нечёткой системы вывода, основанной на методе отношения площадей
НА Милостная - Известия Юго-Западного государственного …, 2022 - science.swsu.ru
Аннотация Цель исследования: исследование гипотезы о возможности изменения
вида переходного процесса во время обучения нейро-нечёткой системы вывода …
вида переходного процесса во время обучения нейро-нечёткой системы вывода …
[PDF][PDF] Метод нелинейного обучения нейро-нечеткой системы вывода
МВ Бобырь - Искусственный интеллект и принятие решений, 2018 - mathnet.ru
Рассмотрен новый метод обучения системы нейро-нечеткого вывода.
Структурирована обобщенная модель нечеткого вывода с использованием в нем …
Структурирована обобщенная модель нечеткого вывода с использованием в нем …
Approximation of the functional equation I (x, I (x, y))= I (x, y)
S Dai - Journal of Intelligent & Fuzzy Systems, 2024 - content.iospress.com
The well-known iterative boolean-like law a→(a→ b)= a→ b can be generalized to the
functional equation I (x, I (x, y))= I (x, y), where I is a fuzzy implication. In this paper, we …
functional equation I (x, I (x, y))= I (x, y), where I is a fuzzy implication. In this paper, we …
[PDF][PDF] Neutrosophic Overlap Function and Its Derived Neutrosophic Residual Implication
X Zhang, Q Hu, X Zhang - Neutrosophic Sets and …, 2023 - digitalrepository.unm.edu
A new concept of neutrosophic overlap function is given, furthermore a neutrosophic
residual implication derived from it is also introduced. Firstly, we give new concept of …
residual implication derived from it is also introduced. Firstly, we give new concept of …
[PDF][PDF] Stability Study of a Neuro-Fuzzy Output System Based on Ratio Area Method
NA Milostnaya - Юго-Западного государственного университета, 2021 - science.swsu.ru
Purpose of research is to study the hypothesis about the possibility of changing the type of
transition process during training in a neuro-fuzzy inference system based on area ratio …
transition process during training in a neuro-fuzzy inference system based on area ratio …
Lattice operations on fuzzy implications and the preservation of the exchange principle
In this work, we solve an open problem related to the preservation of the exchange principle
(EP) of fuzzy implications under lattice operations ([3], Problem 3.1.). We show that …
(EP) of fuzzy implications under lattice operations ([3], Problem 3.1.). We show that …
Some solutions of functional equation involving fuzzy implications
NR Vemuri - arXiv preprint arXiv:2012.15752, 2020 - arxiv.org
In this article, a functional equation (IE) involving fuzzy implications has been considered.
Two different perspectives of this equation have been provided to realize its significance. As …
Two different perspectives of this equation have been provided to realize its significance. As …