A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges

T Lesort, V Lomonaco, A Stoian, D Maltoni, D Filliat… - Information fusion, 2020 - Elsevier
Continual learning (CL) is a particular machine learning paradigm where the data
distribution and learning objective change through time, or where all the training data and …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: survey and performance evaluation on image classification

M Masana, X Liu, B Twardowski… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Plop: Learning without forgetting for continual semantic segmentation

A Douillard, Y Chen, A Dapogny… - Proceedings of the …, 2021 - openaccess.thecvf.com
Deep learning approaches are nowadays ubiquitously used to tackle computer vision tasks
such as semantic segmentation, requiring large datasets and substantial computational …

Representation compensation networks for continual semantic segmentation

CB Zhang, JW Xiao, X Liu, YC Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this work, we study the continual semantic segmentation problem, where the deep neural
networks are required to incorporate new classes continually without catastrophic forgetting …

Modeling the background for incremental learning in semantic segmentation

F Cermelli, M Mancini, SR Bulo… - Proceedings of the …, 2020 - openaccess.thecvf.com
Despite their effectiveness in a wide range of tasks, deep architectures suffer from some
important limitations. In particular, they are vulnerable to catastrophic forgetting, ie they …

Recall: Replay-based continual learning in semantic segmentation

A Maracani, U Michieli, M Toldo… - Proceedings of the …, 2021 - openaccess.thecvf.com
Deep networks allow to obtain outstanding results in semantic segmentation, however they
need to be trained in a single shot with a large amount of data. Continual learning settings …

Federated incremental semantic segmentation

J Dong, D Zhang, Y Cong, W Cong… - Proceedings of the …, 2023 - openaccess.thecvf.com
Federated learning-based semantic segmentation (FSS) has drawn widespread attention
via decentralized training on local clients. However, most FSS models assume categories …