Combining machine learning and computational chemistry for predictive insights into chemical systems
Machine learning models are poised to make a transformative impact on chemical sciences
by dramatically accelerating computational algorithms and amplifying insights available from …
by dramatically accelerating computational algorithms and amplifying insights available from …
Machine learning force fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled
numerous advances previously out of reach due to the computational complexity of …
numerous advances previously out of reach due to the computational complexity of …
On the opportunities and risks of foundation models
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …
Data selection for language models via importance resampling
Selecting a suitable pretraining dataset is crucial for both general-domain (eg, GPT-3) and
domain-specific (eg, Codex) language models (LMs). We formalize this problem as selecting …
domain-specific (eg, Codex) language models (LMs). We formalize this problem as selecting …
A unifying review of deep and shallow anomaly detection
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …
the art in detection performance on complex data sets, such as large collections of images or …
A brief review of domain adaptation
Classical machine learning assumes that the training and test sets come from the same
distributions. Therefore, a model learned from the labeled training data is expected to …
distributions. Therefore, a model learned from the labeled training data is expected to …
Learning protein fitness models from evolutionary and assay-labeled data
Abstract Machine learning-based models of protein fitness typically learn from either
unlabeled, evolutionarily related sequences or variant sequences with experimentally …
unlabeled, evolutionarily related sequences or variant sequences with experimentally …
Unleashing the power of graph data augmentation on covariate distribution shift
The issue of distribution shifts is emerging as a critical concern in graph representation
learning. From the perspective of invariant learning and stable learning, a recently well …
learning. From the perspective of invariant learning and stable learning, a recently well …
[HTML][HTML] Deep neural network battery charging curve prediction using 30 points collected in 10 min
Accurate degradation monitoring over battery life is indispensable for the safe and durable
operation of battery-powered applications. In this work, we extend conventional capacity …
operation of battery-powered applications. In this work, we extend conventional capacity …