[HTML][HTML] Fractional order orlicz-sobolev spaces

JF Bonder, AM Salort - Journal of Functional Analysis, 2019 - Elsevier
In this paper we define the fractional order Orlicz-Sobolev spaces, and prove its
convergence to the classical Orlicz-Sobolev spaces when the fractional parameter s↑ 1 in …

[HTML][HTML] Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity

V Ambrosio, P d'Avenia - Journal of Differential Equations, 2018 - Elsevier
In this paper we focus our attention on the following nonlinear fractional Schrödinger
equation with magnetic field ε 2 s (− Δ) A/ε s u+ V (x) u= f (| u| 2) u in RN, where ε> 0 is a …

[HTML][HTML] Decay estimates for evolution equations with classical and fractional time-derivatives

E Affili, E Valdinoci - Journal of Differential Equations, 2019 - Elsevier
Using energy methods, we prove some power-law and exponential decay estimates for
classical and nonlocal evolutionary equations. The results obtained are framed into a …

Bourgain-Brezis-Mironescu formula for -spaces in arbitrary domains

K Mohanta - Calculus of Variations and Partial Differential …, 2024 - Springer
Under certain restrictions on s, p, q, the Triebel-Lizorkin spaces can be viewed as
generalised fractional Sobolev spaces W qs, p. In this article, we show that the Bourgain …

Fractional Laplacians, perimeters and heat semigroups in Carnot groups

F Ferrara, M Miranda, D Pallara, A Pinamonti… - … SYSTEMS. SERIES S, 2018 - sfera.unife.it
FRACTIONAL LAPLACIANS, PERIMETERS AND HEAT SEMIGROUPS IN CARNOT GROUPS
Fausto Ferrari Michele Miranda Jr. Diego Pallara Andrea P Page 1 Manuscript submitted to …

New Brezis–Van Schaftingen–Yung–Sobolev type inequalities connected with maximal inequalities and one parameter families of operators

Ó Domínguez, M Milman - Advances in Mathematics, 2022 - Elsevier
Motivated by the recent characterization of Sobolev spaces due to Brezis–Van Schaftingen–
Yung we prove new weak-type inequalities for one parameter families of operators …

Some characterizations of magnetic Sobolev spaces

HM Nguyen, A Pinamonti, M Squassina… - Complex Variables and …, 2020 - Taylor & Francis
The aim of this note is to survey recent results contained in Nguyen HM, Squassina M.[On
anisotropic Sobolev spaces. Commun Contemp Math, to appear. DOI: 10.1142 …

Concentration phenomena for a fractional Choquard equation with magnetic field

V Ambrosio - arXiv preprint arXiv:1807.07442, 2018 - arxiv.org
We consider the following nonlinear fractional Choquard equation $$\varepsilon^{2s}(-
\Delta)^{s} _ {A/\varepsilon} u+ V (x) u=\varepsilon^{\mu-N}\left (\frac {1}{| x|^{\mu}}* F …

Interpolations and fractional Sobolev spaces in Carnot groups

A Maalaoui, A Pinamonti - Nonlinear Analysis, 2019 - Elsevier
In this paper we present an interpolation approach to the fractional Sobolev spaces in
Carnot groups using the K-method. This approach provides us with a different …

Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields

V Ambrosio - arXiv preprint arXiv:1808.09295, 2018 - arxiv.org
This paper is concerned with the multiplicity and concentration behavior of nontrivial
solutions for the following fractional Kirchhoff equation in presence of a magnetic field:\begin …