Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Self-supervised learning for recommender systems: A survey

J Yu, H Yin, X Xia, T Chen, J Li… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arXiv preprint arXiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Large language models are zero-shot rankers for recommender systems

Y Hou, J Zhang, Z Lin, H Lu, R Xie, J McAuley… - … on Information Retrieval, 2024 - Springer
Recently, large language models (LLMs)(eg, GPT-4) have demonstrated impressive general-
purpose task-solving abilities, including the potential to approach recommendation tasks …

Is chatgpt a good recommender? a preliminary study

J Liu, C Liu, P Zhou, R Lv, K Zhou, Y Zhang - arXiv preprint arXiv …, 2023 - arxiv.org
Recommendation systems have witnessed significant advancements and have been widely
used over the past decades. However, most traditional recommendation methods are task …

Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5)

S Geng, S Liu, Z Fu, Y Ge, Y Zhang - … of the 16th ACM Conference on …, 2022 - dl.acm.org
For a long time, different recommendation tasks require designing task-specific architectures
and training objectives. As a result, it is hard to transfer the knowledge and representations …

Are graph augmentations necessary? simple graph contrastive learning for recommendation

J Yu, H Yin, X Xia, T Chen, L Cui… - Proceedings of the 45th …, 2022 - dl.acm.org
Contrastive learning (CL) recently has spurred a fruitful line of research in the field of
recommendation, since its ability to extract self-supervised signals from the raw data is well …

Towards universal sequence representation learning for recommender systems

Y Hou, S Mu, WX Zhao, Y Li, B Ding… - Proceedings of the 28th …, 2022 - dl.acm.org
In order to develop effective sequential recommenders, a series of sequence representation
learning (SRL) methods are proposed to model historical user behaviors. Most existing SRL …

Recommendation as instruction following: A large language model empowered recommendation approach

J Zhang, R Xie, Y Hou, WX Zhao, L Lin… - arXiv preprint arXiv …, 2023 - arxiv.org
In the past decades, recommender systems have attracted much attention in both research
and industry communities, and a large number of studies have been devoted to developing …

Text is all you need: Learning language representations for sequential recommendation

J Li, M Wang, J Li, J Fu, X Shen, J Shang… - Proceedings of the 29th …, 2023 - dl.acm.org
Sequential recommendation aims to model dynamic user behavior from historical
interactions. Existing methods rely on either explicit item IDs or general textual features for …