= 2* Schur indices

Y Hatsuda, T Okazaki - Journal of High Energy Physics, 2023 - Springer
A bstract We find closed-form expressions for the Schur indices of 4d\(\mathcal {N}\)= 2*
super Yang-Mills theory with unitary gauge groups for arbitrary ranks via the Fermi-gas …

Logarithmic double ramification cycles

D Holmes, S Molcho, R Pandharipande… - arXiv preprint arXiv …, 2022 - arxiv.org
Let $ A=(a_1,\ldots, a_n) $ be a vector of integers which sum to $ k (2g-2+ n) $. The double
ramification cycle $\mathsf {DR} _ {g, A}\in\mathsf {CH}^ g (\mathcal {M} _ {g, n}) $ on the …

Curve counting on the Enriques surface and the Klemm-Mari\~{n} o formula

G Oberdieck - arXiv preprint arXiv:2305.11115, 2023 - arxiv.org
We determine the Gromov-Witten invariants of the local Enriques surfaces for all genera and
curve classes and prove the Klemm-Mari\~{n} o formula. In particular, we show that the …

Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface

G Oberdieck - Geometry & Topology, 2024 - msp.org
We conjecture that the generating series of Gromov–Witten invariants of the Hilbert schemes
of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly …

Gopakumar–Vafa type invariants of holomorphic symplectic 4-folds

Y Cao, G Oberdieck, Y Toda - Communications in Mathematical Physics, 2024 - Springer
Abstract Using reduced Gromov–Witten theory, we define new invariants which capture the
enumerative geometry of curves on holomorphic symplectic 4-folds. The invariants are …

Multiple cover formulas for K3 geometries, wall-crossing, and Quot schemes

G Oberdieck - arXiv preprint arXiv:2111.11239, 2021 - arxiv.org
Let $ S $ be a K3 surface. We study the reduced Donaldson-Thomas theory of the cap
$(S\times\mathbb {P}^ 1)/S_ {\infty} $ by a second cosection argument. We obtain four main …

Quantum cohomology of the Hilbert scheme of points on an elliptic surface

G Oberdieck, A Pixton - arXiv preprint arXiv:2312.13188, 2023 - arxiv.org
We determine the quantum multiplication with divisor classes on the Hilbert scheme of
points on an elliptic surface $ S\to\Sigma $ for all curve classes which are contracted by the …

Pandharipande-Thomas theory of elliptic threefolds, quasi-Jacobi forms and holomorphic anomaly equations

G Oberdieck, M Schimpf - arXiv preprint arXiv:2308.09652, 2023 - arxiv.org
Let $\pi: X\to B $ be an elliptically fibered threefold satisfying $ c_3 (T_X\otimes\omega_X)=
0$. We conjecture that the $\pi $-relative generating series of Pandharipande-Thomas …

Elliptic genus and modular differential equations

D Adler, V Gritsenko - Journal of Geometry and Physics, 2022 - Elsevier
We study modular differential equations for the basic weak Jacobi forms in one abelian
variable with applications to the elliptic genus of Calabi–Yau varieties. We show that the …

Differential algebras of quasi-Jacobi forms of index zero

F Dumas, F Martin, E Royer - arXiv preprint arXiv:2410.11344, 2024 - arxiv.org
The notion of double depth associated with quasi-Jacobi forms allows distinguishing, within
the algebra of quasi-Jacobi singular forms of index zero, certain significant subalgebras …