Counterfactual explanations and how to find them: literature review and benchmarking

R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …

A survey of algorithmic recourse: contrastive explanations and consequential recommendations

AH Karimi, G Barthe, B Schölkopf, I Valera - ACM Computing Surveys, 2022 - dl.acm.org
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review

AM Antoniadi, Y Du, Y Guendouz, L Wei, C Mazo… - Applied Sciences, 2021 - mdpi.com
Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and
future potential for transforming almost all aspects of medicine. However, in many …

[PDF][PDF] Counterfactual explanations for machine learning: A review

S Verma, J Dickerson, K Hines - arXiv preprint arXiv …, 2020 - ml-retrospectives.github.io
Abstract Machine learning plays a role in many deployed decision systems, often in ways
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …

A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence

I Stepin, JM Alonso, A Catala, M Pereira-Fariña - IEEE Access, 2021 - ieeexplore.ieee.org
A number of algorithms in the field of artificial intelligence offer poorly interpretable
decisions. To disclose the reasoning behind such algorithms, their output can be explained …

Neurosymbolic AI: the 3rd wave

AA Garcez, LC Lamb - Artificial Intelligence Review, 2023 - Springer
Abstract Current advances in Artificial Intelligence (AI) and Machine Learning have achieved
unprecedented impact across research communities and industry. Nevertheless, concerns …

Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications

YL Chou, C Moreira, P Bruza, C Ouyang, J Jorge - Information Fusion, 2022 - Elsevier
Deep learning models have achieved high performance across different domains, such as
medical decision-making, autonomous vehicles, decision support systems, among many …

A survey of algorithmic recourse: definitions, formulations, solutions, and prospects

AH Karimi, G Barthe, B Schölkopf, I Valera - arXiv preprint arXiv …, 2020 - arxiv.org
Machine learning is increasingly used to inform decision-making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …

Counterfactual explanations and algorithmic recourses for machine learning: A review

S Verma, V Boonsanong, M Hoang, KE Hines… - arXiv preprint arXiv …, 2020 - arxiv.org
Machine learning plays a role in many deployed decision systems, often in ways that are
difficult or impossible to understand by human stakeholders. Explaining, in a human …

A survey of data-driven and knowledge-aware explainable ai

XH Li, CC Cao, Y Shi, W Bai, H Gao… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
We are witnessing a fast development of Artificial Intelligence (AI), but it becomes
dramatically challenging to explain AI models in the past decade.“Explanation” has a flexible …