Counterfactual explanations and how to find them: literature review and benchmarking
R Guidotti - Data Mining and Knowledge Discovery, 2024 - Springer
Interpretable machine learning aims at unveiling the reasons behind predictions returned by
uninterpretable classifiers. One of the most valuable types of explanation consists of …
uninterpretable classifiers. One of the most valuable types of explanation consists of …
A survey of algorithmic recourse: contrastive explanations and consequential recommendations
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …
where decisions have consequential effects on individuals' lives. In these settings, in …
Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: a systematic review
Machine Learning and Artificial Intelligence (AI) more broadly have great immediate and
future potential for transforming almost all aspects of medicine. However, in many …
future potential for transforming almost all aspects of medicine. However, in many …
[PDF][PDF] Counterfactual explanations for machine learning: A review
Abstract Machine learning plays a role in many deployed decision systems, often in ways
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …
that are difficult or impossible to understand by human stakeholders. Explaining, in a human …
A survey of contrastive and counterfactual explanation generation methods for explainable artificial intelligence
A number of algorithms in the field of artificial intelligence offer poorly interpretable
decisions. To disclose the reasoning behind such algorithms, their output can be explained …
decisions. To disclose the reasoning behind such algorithms, their output can be explained …
Neurosymbolic AI: the 3rd wave
Abstract Current advances in Artificial Intelligence (AI) and Machine Learning have achieved
unprecedented impact across research communities and industry. Nevertheless, concerns …
unprecedented impact across research communities and industry. Nevertheless, concerns …
Counterfactuals and causability in explainable artificial intelligence: Theory, algorithms, and applications
Deep learning models have achieved high performance across different domains, such as
medical decision-making, autonomous vehicles, decision support systems, among many …
medical decision-making, autonomous vehicles, decision support systems, among many …
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Machine learning is increasingly used to inform decision-making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …
where decisions have consequential effects on individuals' lives. In these settings, in …
Counterfactual explanations and algorithmic recourses for machine learning: A review
Machine learning plays a role in many deployed decision systems, often in ways that are
difficult or impossible to understand by human stakeholders. Explaining, in a human …
difficult or impossible to understand by human stakeholders. Explaining, in a human …
A survey of data-driven and knowledge-aware explainable ai
We are witnessing a fast development of Artificial Intelligence (AI), but it becomes
dramatically challenging to explain AI models in the past decade.“Explanation” has a flexible …
dramatically challenging to explain AI models in the past decade.“Explanation” has a flexible …