Estimation of off-the grid sparse spikes with over-parametrized projected gradient descent: theory and application

PJ Bénard, Y Traonmilin, JF Aujol, E Soubies - Inverse Problems, 2024 - iopscience.iop.org
In this article, we study the problem of recovering sparse spikes with over-parametrized
projected descent. We first provide a theoretical study of approximate recovery with our …

Projected gradient descent for non-convex sparse spike estimation

Y Traonmilin, JF Aujol, A Leclaire - IEEE Signal Processing …, 2020 - ieeexplore.ieee.org
We propose a new algorithm for sparse spike estimation from Fourier measurements. Based
on theoretical results on non-convex optimization techniques for off-the-grid sparse spike …

[HTML][HTML] Sparsest piecewise-linear regression of one-dimensional data

T Debarre, Q Denoyelle, M Unser, J Fageot - Journal of Computational and …, 2022 - Elsevier
We study the problem of one-dimensional regression of data points with total-variation (TV)
regularization (in the sense of measures) on the second derivative, which is known to …

Fast off-the-grid sparse recovery with over-parametrized projected gradient descent

PJ Bénard, Y Traonmilin, JF Aujol - 2022 30th european signal …, 2022 - ieeexplore.ieee.org
We consider the problem of recovering off-the-grid spikes from Fourier measurements.
Successful methods such as sliding Frank-Wolfe and continuous orthogonal matching …

[PDF][PDF] Sparsest continuous piecewise-linear representation of data

T Debarre, Q Denoyelle, M Unser… - arXiv preprint arXiv …, 2020 - researchgate.net
We study the problem of interpolating one-dimensional data with total variation
regularization on the second derivative, which is known to promote piecewise-linear …

The basins of attraction of the global minimizers of non-convex inverse problems with low-dimensional models in infinite dimension

Y Traonmilin, JF Aujol, A Leclaire - Information and Inference: A …, 2023 - academic.oup.com
Non-convex methods for linear inverse problems with low-dimensional models have
emerged as an alternative to convex techniques. We propose a theoretical framework where …

Projected Block Coordinate Descent for sparse spike estimation

PJ Bénard, Y Traonmilin, JF Aujol - 2024 32nd European …, 2024 - ieeexplore.ieee.org
We consider the problem of recovering off-the-grid spikes from linear measurements. The
state of the art Over-Parametrized Continuous Orthogonal Matching Pursuit (OP-COMP) with …

Space-Scale Hybrid Continuous-Discrete Sliding Frank-Wolfe Method

C Lage, N Pustelnik, JM Arbona… - IEEE Signal Processing …, 2024 - ieeexplore.ieee.org
In this letter, we focus on the challenging problem of designing an off-the-grid method for
dictionaries involving both positional and scale shifts. To tackle this challenge, we introduce …

Efficient and privacy-preserving compressive learning

A Chatalic - 2020 - theses.hal.science
The topic of this Ph. D. thesis lies on the borderline between signal processing, statistics and
computer science. It mainly focuses on compressive learning, a paradigm for large-scale …

Codage espace-échelle parcimonieux en présence de bruit non-gaussien. Application à l'analyse de la réplication de l'ADN en molécule unique

C Lage, N Pustelnik, JM Arbona, B Audit - XXIXème Colloque GRETSI …, 2023 - hal.science
Résumé La réplication de l'ADN est un processus hautement régulé dont la dynamique peut
être analysée par des expériences en molécule unique. La vitesse de réplication ie le taux …