Machine learning in real-time Internet of Things (IoT) systems: A survey

J Bian, A Al Arafat, H Xiong, J Li, L Li… - IEEE Internet of …, 2022 - ieeexplore.ieee.org
Over the last decade, machine learning (ML) and deep learning (DL) algorithms have
significantly evolved and been employed in diverse applications, such as computer vision …

A reinforcement learning-based approach for online optimal control of self-adaptive real-time systems

B Haouari, R Mzid, O Mosbahi - Neural Computing and Applications, 2023 - Springer
This paper deals with self-adaptive real-time embedded systems (RTES). A self-adaptive
system can operate in different modes. Each mode encodes a set of real-time tasks. To be …

Ml for rt: Priority assignment using machine learning

S Lee, H Baek, H Woo, KG Shin… - 2021 IEEE 27th Real …, 2021 - ieeexplore.ieee.org
As machine learning (ML) has been proven effective in solving various problems,
researchers in the real-time systems (RT) community have recently paid increasing attention …

A configuration framework for multi-level preemption schemes in time sensitive networking

MA Ojewale, P Meumeu Yomsi, L Almeida - Proceedings of the 30th …, 2022 - dl.acm.org
To reduce the latency of time-sensitive flows in Ethernet networks, the IEEE TSN Task Group
introduced the IEEE 802.1 Qbu Standard, which specifies a 1-level preemption scheme for …

Real-time scheduling on heterogeneous system-on-chip architectures using an optimised artificial neural network

D Chillet, A Eiche, S Pillement, O Sentieys - Journal of Systems …, 2011 - Elsevier
Today's integrated circuit technologies allow the design of complete systems on a single
chip which execute complex applications specified as a set of tasks. The tasks are managed …

Analiza przepływu informacji w komputerowych sieciach przemysłowych

A Kwiecień - Studia Informatica, 2002 - infona.pl
Praca niniejsza została ujęta w trzynastu rozdziałach. We wstępie zamieszczono ogólne
informacje dotyczące historycznego rozwoju informatycznych systemów sterowania oraz …

A neural network model for real-time scheduling on heterogeneous SoC architectures

D Chillet, S Pillement, O Sentieys - 2007 International Joint …, 2007 - ieeexplore.ieee.org
With increasing embedded application complexity, designers have proposed to introduce
new hardware architectures based on heterogeneous processing units on a single chip. For …

Handling precedence constraints with neural network based real-time scheduling algorithms

C Cardeira, MP Silva, Z Mammeri - … Ninth Euromicro Workshop …, 1997 - ieeexplore.ieee.org
In previous work, the authors proposed an approach to the approximate solution of
scheduling problems, neural network based algorithms, applied to the preemptive and non …

On the specification of partitionable group membership

S Pleisch, O Rütti, A Schiper - 2008 Seventh European …, 2008 - ieeexplore.ieee.org
Group communication in partitionable systems has been the focus of many research
activities over the last decade. Fault-tolerant applications in a partitionable system model …

[PDF][PDF] Application des réseaux de neurones à l'ordonnancement de tâches temps réel sur une architecture multiprocesseurs hétérogènes

I Benkermi, S Pillement, O Sentieys - SympAAA'2003, 2003 - academia.edu
Résumé Ce papier présente les premières réflexions sur l'extension de l'utilisation des
réseaux de neurones dans l'ordonnancement de tâches temps réel, à des architectures …