Perception and sensing for autonomous vehicles under adverse weather conditions: A survey

Y Zhang, A Carballo, H Yang, K Takeda - ISPRS Journal of …, 2023 - Elsevier
Abstract Automated Driving Systems (ADS) open up a new domain for the automotive
industry and offer new possibilities for future transportation with higher efficiency and …

A Survey of Autonomous Driving: Common Practices and Emerging Technologies

E Yurtsever, J Lambert, A Carballo, K Takeda - IEEE access, 2020 - ieeexplore.ieee.org
Automated driving systems (ADSs) promise a safe, comfortable and efficient driving
experience. However, fatalities involving vehicles equipped with ADSs are on the rise. The …

Gmflow: Learning optical flow via global matching

H Xu, J Zhang, J Cai… - Proceedings of the …, 2022 - openaccess.thecvf.com
Learning-based optical flow estimation has been dominated with the pipeline of cost volume
with convolutions for flow regression, which is inherently limited to local correlations and …

ACDC: The adverse conditions dataset with correspondences for semantic driving scene understanding

C Sakaridis, D Dai, L Van Gool - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Level 5 autonomy for self-driving cars requires a robust visual perception system that can
parse input images under any visual condition. However, existing semantic segmentation …

Tent: Fully test-time adaptation by entropy minimization

D Wang, E Shelhamer, S Liu, B Olshausen… - arXiv preprint arXiv …, 2020 - arxiv.org
A model must adapt itself to generalize to new and different data during testing. In this
setting of fully test-time adaptation the model has only the test data and its own parameters …

SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation

T Sun, M Segu, J Postels, Y Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Adapting to a continuously evolving environment is a safety-critical challenge inevitably
faced by all autonomous-driving systems. Existing image-and video-based driving datasets …

Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning

T Yu, D Quillen, Z He, R Julian… - … on robot learning, 2020 - proceedings.mlr.press
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more
quickly, by leveraging prior experience to learn how to learn. However, much of the current …

Argoverse: 3d tracking and forecasting with rich maps

MF Chang, J Lambert, P Sangkloy… - Proceedings of the …, 2019 - openaccess.thecvf.com
We present Argoverse, a dataset designed to support autonomous vehicle perception tasks
including 3D tracking and motion forecasting. Argoverse includes sensor data collected by a …

nuscenes: A multimodal dataset for autonomous driving

H Caesar, V Bankiti, AH Lang, S Vora… - Proceedings of the …, 2020 - openaccess.thecvf.com
Robust detection and tracking of objects is crucial for the deployment of autonomous vehicle
technology. Image based benchmark datasets have driven development in computer vision …

A survey on safety-critical driving scenario generation—A methodological perspective

W Ding, C Xu, M Arief, H Lin, B Li… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Autonomous driving systems have witnessed significant development during the past years
thanks to the advance in machine learning-enabled sensing and decision-making …