Recent advancements in end-to-end autonomous driving using deep learning: A survey

PS Chib, P Singh - IEEE Transactions on Intelligent Vehicles, 2023 - ieeexplore.ieee.org
End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with
modular systems, such as their overwhelming complexity and propensity for error …

Scenario understanding and motion prediction for autonomous vehicles—review and comparison

P Karle, M Geisslinger, J Betz… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Scenario understanding and motion prediction are essential components for completely
replacing human drivers and for enabling highly and fully automated driving (SAE-Level …

A survey on trajectory-prediction methods for autonomous driving

Y Huang, J Du, Z Yang, Z Zhou… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …

Query-centric trajectory prediction

Z Zhou, J Wang, YH Li… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Predicting the future trajectories of surrounding agents is essential for autonomous vehicles
to operate safely. This paper presents QCNet, a modeling framework toward pushing the …

Motion transformer with global intention localization and local movement refinement

S Shi, L Jiang, D Dai, B Schiele - Advances in Neural …, 2022 - proceedings.neurips.cc
Predicting multimodal future behavior of traffic participants is essential for robotic vehicles to
make safe decisions. Existing works explore to directly predict future trajectories based on …

Hivt: Hierarchical vector transformer for multi-agent motion prediction

Z Zhou, L Ye, J Wang, K Wu… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Accurately predicting the future motions of surrounding traffic agents is critical for the safety
of autonomous vehicles. Recently, vectorized approaches have dominated the motion …

Wayformer: Motion forecasting via simple & efficient attention networks

N Nayakanti, R Al-Rfou, A Zhou, K Goel… - … on Robotics and …, 2023 - ieeexplore.ieee.org
Motion forecasting for autonomous driving is a challenging task because complex driving
scenarios involve a heterogeneous mix of static and dynamic inputs. It is an open problem …

St-p3: End-to-end vision-based autonomous driving via spatial-temporal feature learning

S Hu, L Chen, P Wu, H Li, J Yan, D Tao - European Conference on …, 2022 - Springer
Many existing autonomous driving paradigms involve a multi-stage discrete pipeline of
tasks. To better predict the control signals and enhance user safety, an end-to-end approach …

Beverse: Unified perception and prediction in birds-eye-view for vision-centric autonomous driving

Y Zhang, Z Zhu, W Zheng, J Huang, G Huang… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we present BEVerse, a unified framework for 3D perception and prediction
based on multi-camera systems. Unlike existing studies focusing on the improvement of …

Waymax: An accelerated, data-driven simulator for large-scale autonomous driving research

C Gulino, J Fu, W Luo, G Tucker… - Advances in …, 2024 - proceedings.neurips.cc
Simulation is an essential tool to develop and benchmark autonomous vehicle planning
software in a safe and cost-effective manner. However, realistic simulation requires accurate …