Catalyzing next-generation artificial intelligence through neuroai

A Zador, S Escola, B Richards, B Ölveczky… - Nature …, 2023 - nature.com
Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We
propose that to accelerate progress in AI, we must invest in fundamental research in …

Biological underpinnings for lifelong learning machines

D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …

[HTML][HTML] Differential evolution: A recent review based on state-of-the-art works

MF Ahmad, NAM Isa, WH Lim, KM Ang - Alexandria Engineering Journal, 2022 - Elsevier
Differential evolution (DE) is a popular evolutionary algorithm inspired by Darwin's theory of
evolution and has been studied extensively to solve different areas of optimisation and …

Reconfigurable perovskite nickelate electronics for artificial intelligence

HT Zhang, TJ Park, ANMN Islam, DSJ Tran, S Manna… - Science, 2022 - science.org
Reconfigurable devices offer the ability to program electronic circuits on demand. In this
work, we demonstrated on-demand creation of artificial neurons, synapses, and memory …

A survey on evolutionary neural architecture search

Y Liu, Y Sun, B Xue, M Zhang, GG Yen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep neural networks (DNNs) have achieved great success in many applications. The
architectures of DNNs play a crucial role in their performance, which is usually manually …

Meta-learning in neural networks: A survey

T Hospedales, A Antoniou, P Micaelli… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …

Evolutionary machine learning: A survey

A Telikani, A Tahmassebi, W Banzhaf… - ACM Computing …, 2021 - dl.acm.org
Evolutionary Computation (EC) approaches are inspired by nature and solve optimization
problems in a stochastic manner. They can offer a reliable and effective approach to address …

[HTML][HTML] Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

J Waring, C Lindvall, R Umeton - Artificial intelligence in medicine, 2020 - Elsevier
Objective This work aims to provide a review of the existing literature in the field of
automated machine learning (AutoML) to help healthcare professionals better utilize …

Searching for efficient transformers for language modeling

D So, W Mańke, H Liu, Z Dai… - Advances in neural …, 2021 - proceedings.neurips.cc
Large Transformer models have been central to recent advances in natural language
processing. The training and inference costs of these models, however, have grown rapidly …

Deep problems with neural network models of human vision

JS Bowers, G Malhotra, M Dujmović… - Behavioral and Brain …, 2023 - cambridge.org
Deep neural networks (DNNs) have had extraordinary successes in classifying
photographic images of objects and are often described as the best models of biological …