Interpreting black-box models: a review on explainable artificial intelligence

V Hassija, V Chamola, A Mahapatra, A Singal… - Cognitive …, 2024 - Springer
Recent years have seen a tremendous growth in Artificial Intelligence (AI)-based
methodological development in a broad range of domains. In this rapidly evolving field …

Interpretable machine learning for knowledge generation in heterogeneous catalysis

JA Esterhuizen, BR Goldsmith, S Linic - Nature catalysis, 2022 - nature.com
Most applications of machine learning in heterogeneous catalysis thus far have used black-
box models to predict computable physical properties (descriptors), such as adsorption or …

[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence

S Ali, T Abuhmed, S El-Sappagh, K Muhammad… - Information fusion, 2023 - Elsevier
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …

A survey of explainable artificial intelligence for smart cities

AR Javed, W Ahmed, S Pandya, PKR Maddikunta… - Electronics, 2023 - mdpi.com
The emergence of Explainable Artificial Intelligence (XAI) has enhanced the lives of humans
and envisioned the concept of smart cities using informed actions, enhanced user …

Explainable AI for healthcare 5.0: opportunities and challenges

D Saraswat, P Bhattacharya, A Verma, VK Prasad… - IEEE …, 2022 - ieeexplore.ieee.org
In the healthcare domain, a transformative shift is envisioned towards Healthcare 5.0. It
expands the operational boundaries of Healthcare 4.0 and leverages patient-centric digital …

Principles and practice of explainable machine learning

V Belle, I Papantonis - Frontiers in big Data, 2021 - frontiersin.org
Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a core …

[HTML][HTML] The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and …

AF Markus, JA Kors, PR Rijnbeek - Journal of biomedical informatics, 2021 - Elsevier
Artificial intelligence (AI) has huge potential to improve the health and well-being of people,
but adoption in clinical practice is still limited. Lack of transparency is identified as one of the …

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

AB Arrieta, N Díaz-Rodríguez, J Del Ser, A Bennetot… - Information fusion, 2020 - Elsevier
In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if
harnessed appropriately, may deliver the best of expectations over many application sectors …

A survey of visual analytics for explainable artificial intelligence methods

G Alicioglu, B Sun - Computers & Graphics, 2022 - Elsevier
Deep learning (DL) models have achieved impressive performance in various domains such
as medicine, finance, and autonomous vehicle systems with advances in computing power …

Machine learning interpretability: A survey on methods and metrics

DV Carvalho, EM Pereira, JS Cardoso - Electronics, 2019 - mdpi.com
Machine learning systems are becoming increasingly ubiquitous. These systems's adoption
has been expanding, accelerating the shift towards a more algorithmic society, meaning that …