Everything is connected: Graph neural networks
P Veličković - Current Opinion in Structural Biology, 2023 - Elsevier
In many ways, graphs are the main modality of data we receive from nature. This is due to
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …
the fact that most of the patterns we see, both in natural and artificial systems, are elegantly …
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
E (n) equivariant graph neural networks
VG Satorras, E Hoogeboom… - … conference on machine …, 2021 - proceedings.mlr.press
This paper introduces a new model to learn graph neural networks equivariant to rotations,
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
translations, reflections and permutations called E (n)-Equivariant Graph Neural Networks …
Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting
Predicting accurate future trajectories of multiple agents is essential for autonomous systems
but is challenging due to the complex interaction between agents and the uncertainty in …
but is challenging due to the complex interaction between agents and the uncertainty in …
Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting
Multivariate Time Series (MTS) forecasting plays a vital role in a wide range of applications.
Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have become increasingly …
Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have become increasingly …
Eqmotion: Equivariant multi-agent motion prediction with invariant interaction reasoning
Learning to predict agent motions with relationship reasoning is important for many
applications. In motion prediction tasks, maintaining motion equivariance under Euclidean …
applications. In motion prediction tasks, maintaining motion equivariance under Euclidean …
Predrnn: A recurrent neural network for spatiotemporal predictive learning
The predictive learning of spatiotemporal sequences aims to generate future images by
learning from the historical context, where the visual dynamics are believed to have modular …
learning from the historical context, where the visual dynamics are believed to have modular …
Vectornet: Encoding hd maps and agent dynamics from vectorized representation
Behavior prediction in dynamic, multi-agent systems is an important problem in the context
of self-driving cars, due to the complex representations and interactions of road components …
of self-driving cars, due to the complex representations and interactions of road components …