[HTML][HTML] Text classification algorithms: A survey

K Kowsari, K Jafari Meimandi, M Heidarysafa, S Mendu… - Information, 2019 - mdpi.com
In recent years, there has been an exponential growth in the number of complex documents
and texts that require a deeper understanding of machine learning methods to be able to …

Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox

B Rasti, D Hong, R Hang, P Ghamisi… - … and Remote Sensing …, 2020 - ieeexplore.ieee.org
Hyperspectral images (HSIs) provide detailed spectral information through hundreds of
(narrow) spectral channels (also known as dimensionality or bands), which can be used to …

Neighborhood linear discriminant analysis

F Zhu, J Gao, J Yang, N Ye - Pattern Recognition, 2022 - Elsevier
Abstract Linear Discriminant Analysis (LDA) assumes that all samples from the same class
are independently and identically distributed (iid). LDA may fail in the cases where the …

Hyperspectral image classification—Traditional to deep models: A survey for future prospects

M Ahmad, S Shabbir, SK Roy, D Hong… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …

Mvtn: Multi-view transformation network for 3d shape recognition

A Hamdi, S Giancola… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Multi-view projection methods have demonstrated their ability to reach state-of-the-art
performance on 3D shape recognition. Those methods learn different ways to aggregate …

Learning to propagate labels: Transductive propagation network for few-shot learning

Y Liu, J Lee, M Park, S Kim, E Yang, SJ Hwang… - arXiv preprint arXiv …, 2018 - arxiv.org
The goal of few-shot learning is to learn a classifier that generalizes well even when trained
with a limited number of training instances per class. The recently introduced meta-learning …

Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art

P Ghamisi, N Yokoya, J Li, W Liao, S Liu… - … and Remote Sensing …, 2017 - ieeexplore.ieee.org
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …

A survey on object detection in optical remote sensing images

G Cheng, J Han - ISPRS journal of photogrammetry and remote sensing, 2016 - Elsevier
Object detection in optical remote sensing images, being a fundamental but challenging
problem in the field of aerial and satellite image analysis, plays an important role for a wide …

Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach

W Zhao, S Du - IEEE Transactions on Geoscience and Remote …, 2016 - ieeexplore.ieee.org
In this paper, we propose a spectral–spatial feature based classification (SSFC) framework
that jointly uses dimension reduction and deep learning techniques for spectral and spatial …

Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspectral image classification

F Luo, L Zhang, B Du, L Zhang - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Dimensionality reduction (DR) is an important way of improving the classification accuracy of
a hyperspectral image (HSI). Graph learning, which can effectively reveal the intrinsic …