Gap and rigidity theorems of 𝜆-hypersurfaces
Q Guang - Proceedings of the American Mathematical Society, 2018 - ams.org
We study $\lambda $-hypersurfaces that are critical points of a Gaussian weighted area
functional $\int _ {\Sigma} e^{-\frac {| x|^ 2}{4}} dA $ for compact variations that preserve …
functional $\int _ {\Sigma} e^{-\frac {| x|^ 2}{4}} dA $ for compact variations that preserve …
Symmetric convex sets with minimal Gaussian surface area
S Heilman - American Journal of Mathematics, 2021 - muse.jhu.edu
Let $\Omega\subset\Bbb {R}^{n+ 1} $ have minimal Gaussian surface area among all sets
satisfying $\Omega=-\Omega $ with fixed Gaussian volume. Let $ A= A_x $ be the second …
satisfying $\Omega=-\Omega $ with fixed Gaussian volume. Let $ A= A_x $ be the second …
A new pinching theorem for complete self-shrinkers and its generalization
L Lei, H Xu, Z Xu - Science China Mathematics, 2020 - Springer
In this paper, we firstly verify that if M n is an n-dimensional complete self-shrinker with
polynomial volume growth in ℝ n+ 1, and if the squared norm of the second fundamental …
polynomial volume growth in ℝ n+ 1, and if the squared norm of the second fundamental …
New characterizations of the Clifford torus as a Lagrangian self-shrinker
H Li, X Wang - The Journal of Geometric Analysis, 2017 - Springer
In this paper, we obtain several new characterizations of the Clifford torus as a Lagrangian
self-shrinker. We first show that the Clifford torus S^ 1 (1) * S^ 1 (1) S 1 (1)× S 1 (1) is the …
self-shrinker. We first show that the Clifford torus S^ 1 (1) * S^ 1 (1) S 1 (1)× S 1 (1) is the …
Self-shrinkers and translating solitons of mean curvature flow
Q Guang - 2016 - dspace.mit.edu
We study singularity models of mean curvature flow (" MCF") and their generalizations. In the
first part, we focus on rigidity and curvature estimates for self-shrinkers. We give a rigidity …
first part, we focus on rigidity and curvature estimates for self-shrinkers. We give a rigidity …
Rotational surfaces with second fundamental form of constant length
AP Barreto, F Fontenele, L Hartmann - arXiv preprint arXiv:1812.08676, 2018 - arxiv.org
We obtain an infinite family of complete non embedded rotational surfaces in $\mathbb R^
3$ whose second fundamental forms have length equal to one at any point. Also we prove …
3$ whose second fundamental forms have length equal to one at any point. Also we prove …
Resultados de rigidez para sólitons do fluxo da curvatura média
JN Lima - 2023 - repositorio.ufpb.br
Neste trabalho apresentamos um estudo dos sólitons de fluxo de curvatura média, baseado
no trabalho de Alías, Lira e Rigoli, onde introduziram o conceito de sólitons do fluxo de …
no trabalho de Alías, Lira e Rigoli, onde introduziram o conceito de sólitons do fluxo de …
Fluxo de curvatura média e self-shrinkers
MG Vitti - 2020 - repositorio.ufscar.br
O Fluxo de curvatura média aparece na literatura, por volta dos anos 50, na modelagem de
fronteiras de grãos que se formam durante a cristalização em processos de fundição …
fronteiras de grãos que se formam durante a cristalização em processos de fundição …
Rotational surfaces with second fundamental form of constant length
A Paiva Barreto, F Fontenele… - … in Analysis and Geometry, 2023 - intlpress.com
We obtain an infinite family of complete non embedded rotational surfaces in $\mathbb {R}^
3$ whose second fundamental forms have length equal to one at any point. Also we prove …
3$ whose second fundamental forms have length equal to one at any point. Also we prove …