Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Quantum information processing with superconducting circuits: a review
G Wendin - Reports on Progress in Physics, 2017 - iopscience.iop.org
During the last ten years, superconducting circuits have passed from being interesting
physical devices to becoming contenders for near-future useful and scalable quantum …
physical devices to becoming contenders for near-future useful and scalable quantum …
Real-time quantum error correction beyond break-even
The ambition of harnessing the quantum for computation is at odds with the fundamental
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
phenomenon of decoherence. The purpose of quantum error correction (QEC) is to …
A race-track trapped-ion quantum processor
SA Moses, CH Baldwin, MS Allman, R Ancona… - Physical Review X, 2023 - APS
We describe and benchmark a new quantum charge-coupled device (QCCD) trapped-ion
quantum computer based on a linear trap with periodic boundary conditions, which …
quantum computer based on a linear trap with periodic boundary conditions, which …
Suppressing quantum errors by scaling a surface code logical qubit
Nature, 2023 - nature.com
Practical quantum computing will require error rates well below those achievable with
physical qubits. Quantum error correction, offers a path to algorithmically relevant error rates …
physical qubits. Quantum error correction, offers a path to algorithmically relevant error rates …
Realizing repeated quantum error correction in a distance-three surface code
Quantum computers hold the promise of solving computational problems that are intractable
using conventional methods. For fault-tolerant operation, quantum computers must correct …
using conventional methods. For fault-tolerant operation, quantum computers must correct …
A quantum processor based on coherent transport of entangled atom arrays
The ability to engineer parallel, programmable operations between desired qubits within a
quantum processor is key for building scalable quantum information systems,. In most state …
quantum processor is key for building scalable quantum information systems,. In most state …
Demonstration of fault-tolerant universal quantum gate operations
L Postler, S Heuβen, I Pogorelov, M Rispler, T Feldker… - Nature, 2022 - nature.com
Quantum computers can be protected from noise by encoding the logical quantum
information redundantly into multiple qubits using error-correcting codes,. When …
information redundantly into multiple qubits using error-correcting codes,. When …
Entanglement of trapped-ion qubits separated by 230 meters
V Krutyanskiy, M Galli, V Krcmarsky, S Baier… - Physical Review Letters, 2023 - APS
We report on an elementary quantum network of two atomic ions separated by 230 m. The
ions are trapped in different buildings and connected with 520 (2) m of optical fiber. At each …
ions are trapped in different buildings and connected with 520 (2) m of optical fiber. At each …
Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders
Quantum error correction offers a promising path for performing high fidelity quantum
computations. Although fully fault-tolerant executions of algorithms remain unrealized …
computations. Although fully fault-tolerant executions of algorithms remain unrealized …