[HTML][HTML] Scientific machine learning through physics–informed neural networks: Where we are and what's next

S Cuomo, VS Di Cola, F Giampaolo, G Rozza… - Journal of Scientific …, 2022 - Springer
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …

Physics-informed neural networks (PINNs) for fluid mechanics: A review

S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis - Acta Mechanica Sinica, 2021 - Springer
Despite the significant progress over the last 50 years in simulating flow problems using
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …

[HTML][HTML] A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Characterizing possible failure modes in physics-informed neural networks

A Krishnapriyan, A Gholami, S Zhe… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent work in scientific machine learning has developed so-called physics-informed neural
network (PINN) models. The typical approach is to incorporate physical domain knowledge …

Physics-informed neural operator for learning partial differential equations

Z Li, H Zheng, N Kovachki, D Jin, H Chen… - ACM/JMS Journal of …, 2024 - dl.acm.org
In this article, we propose physics-informed neural operators (PINO) that combine training
data and physics constraints to learn the solution operator of a given family of parametric …

Physics-informed neural networks for heat transfer problems

S Cai, Z Wang, S Wang… - Journal of Heat …, 2021 - asmedigitalcollection.asme.org
Physics-informed neural networks (PINNs) have gained popularity across different
engineering fields due to their effectiveness in solving realistic problems with noisy data and …

Self-adaptive loss balanced physics-informed neural networks

Z Xiang, W Peng, X Liu, W Yao - Neurocomputing, 2022 - Elsevier
Physics-informed neural networks (PINNs) have received significant attention as a
representative deep learning-based technique for solving partial differential equations …

Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial …

AD Jagtap, GE Karniadakis - Communications in Computational Physics, 2020 - osti.gov
Here we propose a generalized space-time domain decomposition approach for the physics-
informed neural networks (PINNs) to solve nonlinear partial differential equations (PDEs) on …

When and why PINNs fail to train: A neural tangent kernel perspective

S Wang, X Yu, P Perdikaris - Journal of Computational Physics, 2022 - Elsevier
Physics-informed neural networks (PINNs) have lately received great attention thanks to
their flexibility in tackling a wide range of forward and inverse problems involving partial …

On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks

S Wang, H Wang, P Perdikaris - Computer Methods in Applied Mechanics …, 2021 - Elsevier
Physics-informed neural networks (PINNs) are demonstrating remarkable promise in
integrating physical models with gappy and noisy observational data, but they still struggle …