Mel frequency cepstral coefficient and its applications: A review
ZK Abdul, AK Al-Talabani - IEEE Access, 2022 - ieeexplore.ieee.org
Feature extraction and representation has significant impact on the performance of any
machine learning method. Mel Frequency Cepstrum Coefficient (MFCC) is designed to …
machine learning method. Mel Frequency Cepstrum Coefficient (MFCC) is designed to …
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge
There is a large body of literature linking anatomic and geometric characteristics of kidney
tumors to perioperative and oncologic outcomes. Semantic segmentation of these tumors …
tumors to perioperative and oncologic outcomes. Semantic segmentation of these tumors …
Segment anything model for medical images?
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …
segmentation. It has achieved impressive results on various natural image segmentation …
Fast and low-GPU-memory abdomen CT organ segmentation: the flare challenge
Automatic segmentation of abdominal organs in CT scans plays an important role in clinical
practice. However, most existing benchmarks and datasets only focus on segmentation …
practice. However, most existing benchmarks and datasets only focus on segmentation …
Abdomenct-1k: Is abdominal organ segmentation a solved problem?
With the unprecedented developments in deep learning, automatic segmentation of main
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …
abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have …
[HTML][HTML] The liver tumor segmentation benchmark (lits)
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark
(LiTS), which was organized in conjunction with the IEEE International Symposium on …
(LiTS), which was organized in conjunction with the IEEE International Symposium on …
Self-supervised learning for medical image analysis using image context restoration
Abstract Machine learning, particularly deep learning has boosted medical image analysis
over the past years. Training a good model based on deep learning requires large amount …
over the past years. Training a good model based on deep learning requires large amount …
fastMRI: An open dataset and benchmarks for accelerated MRI
Accelerating Magnetic Resonance Imaging (MRI) by taking fewer measurements has the
potential to reduce medical costs, minimize stress to patients and make MRI possible in …
potential to reduce medical costs, minimize stress to patients and make MRI possible in …
CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation
Segmentation of abdominal organs has been a comprehensive, yet unresolved, research
field for many years. In the last decade, intensive developments in deep learning (DL) …
field for many years. In the last decade, intensive developments in deep learning (DL) …
Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation
Deep learning networks have recently been shown to outperform other segmentation
methods on various public, medical-image challenge datasets, particularly on metrics …
methods on various public, medical-image challenge datasets, particularly on metrics …