A survey on hyperdimensional computing aka vector symbolic architectures, part i: Models and data transformations

D Kleyko, DA Rachkovskij, E Osipov… - ACM Computing …, 2022 - dl.acm.org
This two-part comprehensive survey is devoted to a computing framework most commonly
known under the names Hyperdimensional Computing and Vector Symbolic Architectures …

Indefinite proximity learning: A review

FM Schleif, P Tino - Neural computation, 2015 - ieeexplore.ieee.org
Efficient learning of a data analysis task strongly depends on the data representation. Most
methods rely on (symmetric) similarity or dissimilarity representations by means of metric …

Minimum cost flows, MDPs, and ℓ1-regression in nearly linear time for dense instances

J Van Den Brand, YT Lee, YP Liu, T Saranurak… - Proceedings of the 53rd …, 2021 - dl.acm.org
In this paper we provide new randomized algorithms with improved runtimes for solving
linear programs with two-sided constraints. In the special case of the minimum cost flow …

Sketching as a tool for numerical linear algebra

DP Woodruff - … and Trends® in Theoretical Computer Science, 2014 - nowpublishers.com
This survey highlights the recent advances in algorithms for numerical linear algebra that
have come from the technique of linear sketching, whereby given a matrix, one first …

The fundamental price of secure aggregation in differentially private federated learning

WN Chen, CAC Choo, P Kairouz… - … on Machine Learning, 2022 - proceedings.mlr.press
We consider the problem of training a $ d $ dimensional model with distributed differential
privacy (DP) where secure aggregation (SecAgg) is used to ensure that the server only sees …

Low-rank approximation and regression in input sparsity time

KL Clarkson, DP Woodruff - Journal of the ACM (JACM), 2017 - dl.acm.org
We design a new distribution over m× n matrices S so that, for any fixed n× d matrix A of rank
r, with probability at least 9/10,∥ SAx∥ 2=(1±ε)∥ Ax∥ 2 simultaneously for all x∈ R d …

A neural algorithm for a fundamental computing problem

S Dasgupta, CF Stevens, S Navlakha - Science, 2017 - science.org
Similarity search—for example, identifying similar images in a database or similar
documents on the web—is a fundamental computing problem faced by large-scale …

Randomized algorithms for matrices and data

MW Mahoney - Foundations and Trends® in Machine …, 2011 - nowpublishers.com
Randomized algorithms for very large matrix problems have received a great deal of
attention in recent years. Much of this work was motivated by problems in large-scale data …

Dimensionality reduction for k-means clustering and low rank approximation

MB Cohen, S Elder, C Musco, C Musco… - Proceedings of the forty …, 2015 - dl.acm.org
We show how to approximate a data matrix A with a much smaller sketch~ A that can be
used to solve a general class of constrained k-rank approximation problems to within (1+ ε) …

Newton sketch: A near linear-time optimization algorithm with linear-quadratic convergence

M Pilanci, MJ Wainwright - SIAM Journal on Optimization, 2017 - SIAM
We propose a randomized second-order method for optimization known as the Newton
sketch: it is based on performing an approximate Newton step using a randomly projected …