Memory devices and applications for in-memory computing
Traditional von Neumann computing systems involve separate processing and memory
units. However, data movement is costly in terms of time and energy and this problem is …
units. However, data movement is costly in terms of time and energy and this problem is …
Model compression and hardware acceleration for neural networks: A comprehensive survey
Domain-specific hardware is becoming a promising topic in the backdrop of improvement
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …
domains. This new field of machine learning has been growing rapidly and has been …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
Edge machine learning for ai-enabled iot devices: A review
In a few years, the world will be populated by billions of connected devices that will be
placed in our homes, cities, vehicles, and industries. Devices with limited resources will …
placed in our homes, cities, vehicles, and industries. Devices with limited resources will …
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
Memristors with tunable resistance states are emerging building blocks of artificial neural
networks. However, in situ learning on a large-scale multiple-layer memristor network has …
networks. However, in situ learning on a large-scale multiple-layer memristor network has …
The history began from alexnet: A comprehensive survey on deep learning approaches
Deep learning has demonstrated tremendous success in variety of application domains in
the past few years. This new field of machine learning has been growing rapidly and applied …
the past few years. This new field of machine learning has been growing rapidly and applied …
{TVM}: An automated {End-to-End} optimizing compiler for deep learning
There is an increasing need to bring machine learning to a wide diversity of hardware
devices. Current frameworks rely on vendor-specific operator libraries and optimize for a …
devices. Current frameworks rely on vendor-specific operator libraries and optimize for a …
Simba: Scaling deep-learning inference with multi-chip-module-based architecture
Package-level integration using multi-chip-modules (MCMs) is a promising approach for
building large-scale systems. Compared to a large monolithic die, an MCM combines many …
building large-scale systems. Compared to a large monolithic die, an MCM combines many …
Hardware approximate techniques for deep neural network accelerators: A survey
Deep Neural Networks (DNNs) are very popular because of their high performance in
various cognitive tasks in Machine Learning (ML). Recent advancements in DNNs have …
various cognitive tasks in Machine Learning (ML). Recent advancements in DNNs have …