Self-supervised representation learning: Introduction, advances, and challenges

L Ericsson, H Gouk, CC Loy… - IEEE Signal Processing …, 2022 - ieeexplore.ieee.org
Self-supervised representation learning (SSRL) methods aim to provide powerful, deep
feature learning without the requirement of large annotated data sets, thus alleviating the …

Generalized video anomaly event detection: Systematic taxonomy and comparison of deep models

Y Liu, D Yang, Y Wang, J Liu, J Liu… - ACM Computing …, 2024 - dl.acm.org
Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance
systems, enabling the temporal or spatial identification of anomalous events within videos …

Dense contrastive learning for self-supervised visual pre-training

X Wang, R Zhang, C Shen… - Proceedings of the …, 2021 - openaccess.thecvf.com
To date, most existing self-supervised learning methods are designed and optimized for
image classification. These pre-trained models can be sub-optimal for dense prediction …

Hard negative mixing for contrastive learning

Y Kalantidis, MB Sariyildiz, N Pion… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning has become a key component of self-supervised learning approaches
for computer vision. By learning to embed two augmented versions of the same image close …

Prototypical contrastive learning of unsupervised representations

J Li, P Zhou, C Xiong, SCH Hoi - arXiv preprint arXiv:2005.04966, 2020 - arxiv.org
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised
representation learning method that addresses the fundamental limitations of instance-wise …

Videomoco: Contrastive video representation learning with temporally adversarial examples

T Pan, Y Song, T Yang, W Jiang… - Proceedings of the …, 2021 - openaccess.thecvf.com
MoCo is effective for unsupervised image representation learning. In this paper, we propose
VideoMoCo for unsupervised video representation learning. Given a video sequence as an …

How well do self-supervised models transfer?

L Ericsson, H Gouk… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Self-supervised visual representation learning has seen huge progress recently, but no
large scale evaluation has compared the many models now available. We evaluate the …

Visual recognition with deep nearest centroids

W Wang, C Han, T Zhou, D Liu - arXiv preprint arXiv:2209.07383, 2022 - arxiv.org
We devise deep nearest centroids (DNC), a conceptually elegant yet surprisingly effective
network for large-scale visual recognition, by revisiting Nearest Centroids, one of the most …

Efficient self-supervised vision transformers for representation learning

C Li, J Yang, P Zhang, M Gao, B Xiao, X Dai… - arXiv preprint arXiv …, 2021 - arxiv.org
This paper investigates two techniques for developing efficient self-supervised vision
transformers (EsViT) for visual representation learning. First, we show through a …

Efficient deep embedded subspace clustering

J Cai, J Fan, W Guo, S Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recently deep learning methods have shown significant progress in data clustering tasks.
Deep clustering methods (including distance-based methods and subspace-based …