[HTML][HTML] On a connection between the N-dimensional fractional Laplacian and 1-D operators on lattices

C Lizama, M Murillo-Arcila - Journal of Mathematical Analysis and …, 2022 - Elsevier
We show the remarkable fact that the nonlocal property of the discrete N-dimensional
fractional Laplacian acting in the second variable of the lattice N× ZN can be exchanged …

Large-time behavior of two families of operators related to the fractional Laplacian on certain Riemannian manifolds

E Papageorgiou - Potential Analysis, 2024 - Springer
This note is concerned with two families of operators related to the fractional Laplacian, the
first arising from the Caffarelli-Silvestre extension problem and the second from the fractional …

Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted  …

I Alvarez-Romero, B Barrios, JJ Betancor - arXiv preprint arXiv:2202.11210, 2022 - arxiv.org
In this paper we consider the heat semigroup $\{W_t\} _ {t> 0} $ defined by the combinatorial
Laplacian and two subordinated families of $\{W_t\} _ {t> 0} $ on homogeneous trees $ X …

[HTML][HTML] Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces

E Papageorgiou - Journal of Evolution Equations, 2024 - Springer
This work deals with the extension problem for the fractional Laplacian on Riemannian
symmetric spaces G/K of noncompact type and of general rank, which gives rise to a family …

[PDF][PDF] Asymptotic behavior of solutions to the multidimensional semidiscrete diffusion equation

A Slavík - Electronic Journal of Qualitative Theory of Differential …, 2022 - real.mtak.hu
We study the asymptotic behavior of solutions to the multidimensional diffusion (heat)
equation with continuous time and discrete space. We focus on initial-value problems with …

[HTML][HTML] Discrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates

L Abadias, M De León-Contreras - Journal of Evolution Equations, 2022 - Springer
In this paper, we characterize the discrete Hölder spaces by means of the heat and Poisson
semigroups associated with the discrete Laplacian. These characterizations allow us to get …

The semidiscrete damped wave equation with a fractional Laplacian

C Lizama, M Murillo-Arcila - Proceedings of the American Mathematical …, 2023 - ams.org
In this paper we completely solve the open problem of finding the fundamental solution of
the semidiscrete fractional-spatial damped wave equation. We combine operator theory and …

Discrete Besov spaces via semigroups associated to the discrete Laplacian and regularity of non-local operators

L Abadias, D León-Contreras, A Mahillo - arXiv preprint arXiv …, 2024 - arxiv.org
In this paper we prove characterizations of the discrete Besov spaces in terms of the heat
and Poisson semigroups associated with the discrete Laplacian that will allow us to prove …

Harmonic analysis for a multidimensional discrete Laplacian

Ó Ciaurri - arXiv preprint arXiv:2312.16642, 2023 - arxiv.org
In this paper we analyze some classical operators in harmonic analysis associated to the
multidimensional discrete Laplacian\[\Delta_N f (\mathbf {n})=\sum_ {i= 1}^{N}(f (\mathbf …

Time-step heat problem on the mesh: asymptotic behavior and decay rates

L Abadias, J González-Camus, S Rueda - Forum Mathematicum, 2023 - degruyter.com
In this article, we study the asymptotic behavior and decay of the solution of the fully discrete
heat problem. We show basic properties of its solutions, such as the mass conservation …