A modern primer on processing in memory

O Mutlu, S Ghose, J Gómez-Luna… - … computing: from devices …, 2022 - Springer
Modern computing systems are overwhelmingly designed to move data to computation. This
design choice goes directly against at least three key trends in computing that cause …

Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology

V Seshadri, D Lee, T Mullins, H Hassan… - Proceedings of the 50th …, 2017 - dl.acm.org
Many important applications trigger bulk bitwise operations, ie, bitwise operations on large
bit vectors. In fact, recent works design techniques that exploit fast bulk bitwise operations to …

Benchmarking a new paradigm: Experimental analysis and characterization of a real processing-in-memory system

J Gómez-Luna, I El Hajj, I Fernandez… - IEEE …, 2022 - ieeexplore.ieee.org
Many modern workloads, such as neural networks, databases, and graph processing, are
fundamentally memory-bound. For such workloads, the data movement between main …

Google workloads for consumer devices: Mitigating data movement bottlenecks

A Boroumand, S Ghose, Y Kim… - Proceedings of the …, 2018 - dl.acm.org
We are experiencing an explosive growth in the number of consumer devices, including
smartphones, tablets, web-based computers such as Chromebooks, and wearable devices …

Processing data where it makes sense: Enabling in-memory computation

O Mutlu, S Ghose, J Gómez-Luna… - Microprocessors and …, 2019 - Elsevier
Today's systems are overwhelmingly designed to move data to computation. This design
choice goes directly against at least three key trends in systems that cause performance …

Rowhammer: A retrospective

O Mutlu, JS Kim - … Transactions on Computer-Aided Design of …, 2019 - ieeexplore.ieee.org
This retrospective paper describes the RowHammer problem in dynamic random access
memory (DRAM), which was initially introduced by Kim et al. at the ISCA 2014 Conference …

Recnmp: Accelerating personalized recommendation with near-memory processing

L Ke, U Gupta, BY Cho, D Brooks… - 2020 ACM/IEEE 47th …, 2020 - ieeexplore.ieee.org
Personalized recommendation systems leverage deep learning models and account for the
majority of data center AI cycles. Their performance is dominated by memory-bound sparse …

Processing-in-memory: A workload-driven perspective

S Ghose, A Boroumand, JS Kim… - IBM Journal of …, 2019 - ieeexplore.ieee.org
Many modern and emerging applications must process increasingly large volumes of data.
Unfortunately, prevalent computing paradigms are not designed to efficiently handle such …

DAMOV: A new methodology and benchmark suite for evaluating data movement bottlenecks

GF Oliveira, J Gómez-Luna, L Orosa, S Ghose… - IEEE …, 2021 - ieeexplore.ieee.org
Data movement between the CPU and main memory is a first-order obstacle against improv
ing performance, scalability, and energy efficiency in modern systems. Computer systems …

HRL: Efficient and flexible reconfigurable logic for near-data processing

M Gao, C Kozyrakis - 2016 IEEE International Symposium on …, 2016 - ieeexplore.ieee.org
The energy constraints due to the end of Dennard scaling, the popularity of in-memory
analytics, and the advances in 3D integration technology have led to renewed interest in …