Vision-language pre-training: Basics, recent advances, and future trends

Z Gan, L Li, C Li, L Wang, Z Liu… - Foundations and Trends …, 2022 - nowpublishers.com
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …

From show to tell: A survey on deep learning-based image captioning

M Stefanini, M Cornia, L Baraldi… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Connecting Vision and Language plays an essential role in Generative Intelligence. For this
reason, large research efforts have been devoted to image captioning, ie describing images …

Imagebind: One embedding space to bind them all

R Girdhar, A El-Nouby, Z Liu, M Singh… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ImageBind, an approach to learn a joint embedding across six different
modalities-images, text, audio, depth, thermal, and IMU data. We show that all combinations …

Simple open-vocabulary object detection

M Minderer, A Gritsenko, A Stone, M Neumann… - … on Computer Vision, 2022 - Springer
Combining simple architectures with large-scale pre-training has led to massive
improvements in image classification. For object detection, pre-training and scaling …

Conditional prompt learning for vision-language models

K Zhou, J Yang, CC Loy, Z Liu - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential
to investigate ways to adapt these models to downstream datasets. A recently proposed …

Decomposing nerf for editing via feature field distillation

S Kobayashi, E Matsumoto… - Advances in Neural …, 2022 - proceedings.neurips.cc
Emerging neural radiance fields (NeRF) are a promising scene representation for computer
graphics, enabling high-quality 3D reconstruction and novel view synthesis from image …

Expanding language-image pretrained models for general video recognition

B Ni, H Peng, M Chen, S Zhang, G Meng, J Fu… - … on Computer Vision, 2022 - Springer
Contrastive language-image pretraining has shown great success in learning visual-textual
joint representation from web-scale data, demonstrating remarkable “zero-shot” …

Lit: Zero-shot transfer with locked-image text tuning

X Zhai, X Wang, B Mustafa, A Steiner… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper presents contrastive-tuning, a simple method employing contrastive training to
align image and text models while still taking advantage of their pre-training. In our empirical …

Learning video representations from large language models

Y Zhao, I Misra, P Krähenbühl… - Proceedings of the …, 2023 - openaccess.thecvf.com
We introduce LAVILA, a new approach to learning video-language representations by
leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be …

Multimodal foundation models: From specialists to general-purpose assistants

C Li, Z Gan, Z Yang, J Yang, L Li… - … and Trends® in …, 2024 - nowpublishers.com
Neural compression is the application of neural networks and other machine learning
methods to data compression. Recent advances in statistical machine learning have opened …