Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study

C Zhao, E Zio, W Shen - Reliability Engineering & System Safety, 2024 - Elsevier
Most data-driven methods for fault diagnostics rely on the assumption of independently and
identically distributed data of training and testing. However, domain shift between the …

Deep transfer learning for intelligent vehicle perception: A survey

X Liu, J Li, J Ma, H Sun, Z Xu, T Zhang, H Yu - Green Energy and Intelligent …, 2023 - Elsevier
Deep learning-based intelligent vehicle perception has been developing prominently in
recent years to provide a reliable source for motion planning and decision making in …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Single-source domain expansion network for cross-scene hyperspectral image classification

Y Zhang, W Li, W Sun, R Tao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Currently, cross-scene hyperspectral image (HSI) classification has drawn increasing
attention. It is necessary to train a model only on source domain (SD) and directly …

Contrastive learning for representation degeneration problem in sequential recommendation

R Qiu, Z Huang, H Yin, Z Wang - … conference on web search and data …, 2022 - dl.acm.org
Recent advancements of sequential deep learning models such as Transformer and BERT
have significantly facilitated the sequential recommendation. However, according to our …

Promptstyler: Prompt-driven style generation for source-free domain generalization

J Cho, G Nam, S Kim, H Yang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In a joint vision-language space, a text feature (eg, from" a photo of a dog") could effectively
represent its relevant image features (eg, from dog photos). Also, a recent study has …

Domain watermark: Effective and harmless dataset copyright protection is closed at hand

J Guo, Y Li, L Wang, ST Xia… - Advances in Neural …, 2024 - proceedings.neurips.cc
The prosperity of deep neural networks (DNNs) is largely benefited from open-source
datasets, based on which users can evaluate and improve their methods. In this paper, we …

Clip the gap: A single domain generalization approach for object detection

V Vidit, M Engilberge… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Single Domain Generalization (SDG) tackles the problem of training a model on a
single source domain so that it generalizes to any unseen target domain. While this has …

Language-aware domain generalization network for cross-scene hyperspectral image classification

Y Zhang, M Zhang, W Li, S Wang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Text information including extensive prior knowledge about land cover classes has been
ignored in hyperspectral image (HSI) classification tasks. It is necessary to explore the …

Causality-inspired single-source domain generalization for medical image segmentation

C Ouyang, C Chen, S Li, Z Li, C Qin… - … on Medical Imaging, 2022 - ieeexplore.ieee.org
Deep learning models usually suffer from the domain shift issue, where models trained on
one source domain do not generalize well to other unseen domains. In this work, we …