Self-supervised speech representation learning: A review
Although supervised deep learning has revolutionized speech and audio processing, it has
necessitated the building of specialist models for individual tasks and application scenarios …
necessitated the building of specialist models for individual tasks and application scenarios …
A review of convolutional neural network architectures and their optimizations
The research advances concerning the typical architectures of convolutional neural
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …
Dinov2: Learning robust visual features without supervision
The recent breakthroughs in natural language processing for model pretraining on large
quantities of data have opened the way for similar foundation models in computer vision …
quantities of data have opened the way for similar foundation models in computer vision …
Scaling speech technology to 1,000+ languages
Expanding the language coverage of speech technology has the potential to improve
access to information for many more people. However, current speech technology is …
access to information for many more people. However, current speech technology is …
Augmented language models: a survey
This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially …
skills and the ability to use tools. The former is defined as decomposing a potentially …
XLS-R: Self-supervised cross-lingual speech representation learning at scale
This paper presents XLS-R, a large-scale model for cross-lingual speech representation
learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a …
learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a …
Atlas: Few-shot learning with retrieval augmented language models
Large language models have shown impressive few-shot results on a wide range of tasks.
However, when knowledge is key for such results, as is the case for tasks such as question …
However, when knowledge is key for such results, as is the case for tasks such as question …
Colbertv2: Effective and efficient retrieval via lightweight late interaction
Neural information retrieval (IR) has greatly advanced search and other knowledge-
intensive language tasks. While many neural IR methods encode queries and documents …
intensive language tasks. While many neural IR methods encode queries and documents …
A survey of quantization methods for efficient neural network inference
This chapter provides approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods …
Neural Network computations, covering the advantages/disadvantages of current methods …
Unsupervised speech recognition
Despite rapid progress in the recent past, current speech recognition systems still require
labeled training data which limits this technology to a small fraction of the languages spoken …
labeled training data which limits this technology to a small fraction of the languages spoken …