[HTML][HTML] Overview of batteries and battery management for electric vehicles

W Liu, T Placke, KT Chau - Energy Reports, 2022 - Elsevier
Popularization of electric vehicles (EVs) is an effective solution to promote carbon neutrality,
thus combating the climate crisis. Advances in EV batteries and battery management …

Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes

CD Quilty, D Wu, W Li, DC Bock, L Wang… - Chemical …, 2023 - ACS Publications
Electrochemical energy storage systems, specifically lithium and lithium-ion batteries, are
ubiquitous in contemporary society with the widespread deployment of portable electronic …

Cathode kinetics evaluation in lean-electrolyte lithium–sulfur batteries

ZX Chen, Q Cheng, XY Li, Z Li, YW Song… - Journal of the …, 2023 - ACS Publications
Lithium–sulfur (Li–S) batteries afford great promise on achieving practical high energy
density beyond lithium-ion batteries. Lean-electrolyte conditions constitute the prerequisite …

Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries

P Xiao, X Yun, Y Chen, X Guo, P Gao, G Zhou… - Chemical Society …, 2023 - pubs.rsc.org
Lithium-based rechargeable batteries have dominated the energy storage field and attracted
considerable research interest due to their excellent electrochemical performance. As …

Recent advances and strategies toward polysulfides shuttle inhibition for high‐performance Li–S batteries

Y Huang, L Lin, C Zhang, L Liu, Y Li, Z Qiao… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation
energy storage systems due to their high energy density and cost‐effectiveness. However …

Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal–sulfur and selenium batteries

H Hao, T Hutter, BL Boyce, J Watt, P Liu… - Chemical …, 2022 - ACS Publications
Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based
cathodes are regarded as key for next-generation energy storage due to their high …

Toward practical high‐energy‐density lithium–sulfur pouch cells: a review

ZX Chen, M Zhao, LP Hou, XQ Zhang, BQ Li… - Advanced …, 2022 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density
energy‐storage devices due to their ultrahigh theoretical energy density of 2600 Wh kg− 1 …

Towards high performance Li–S batteries via sulfonate‐rich COF‐modified separator

J Xu, S An, X Song, Y Cao, N Wang, X Qiu… - Advanced …, 2021 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries are held great promise for next‐generation high‐
energy‐density devices; however, polysulfide shuttle and Li‐dendrite growth severely …

Mo2N Quantum Dots Decorated N‐Doped Graphene Nanosheets as Dual‐Functional Interlayer for Dendrite‐Free and Shuttle‐Free Lithium‐Sulfur Batteries

F Ma, K Srinivas, X Zhang, Z Zhang… - Advanced Functional …, 2022 - Wiley Online Library
The industrialization of lithium–sulfur (Li–S) batteries is simultaneously impeded by the
shuttle effect of lithium polysulfides and dendrites growth on lithium anode. To address both …

Li-S batteries: challenges, achievements and opportunities

H Raza, S Bai, J Cheng, S Majumder, H Zhu… - Electrochemical Energy …, 2023 - Springer
To realize a low-carbon economy and sustainable energy supply, the development of
energy storage devices has aroused intensive attention. Lithium-sulfur (Li-S) batteries are …