A comprehensive survey of continual learning: theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
The rise and potential of large language model based agents: A survey
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …
Three types of incremental learning
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
'continual learning', is a key feature of natural intelligence, but a challenging problem for …
Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …
Memory-based model editing at scale
Even the largest neural networks make errors, and once-correct predictions can become
invalid as the world changes. Model editors make local updates to the behavior of base (pre …
invalid as the world changes. Model editors make local updates to the behavior of base (pre …
Efficient test-time model adaptation without forgetting
Test-time adaptation provides an effective means of tackling the potential distribution shift
between model training and inference, by dynamically updating the model at test time. This …
between model training and inference, by dynamically updating the model at test time. This …
Biological underpinnings for lifelong learning machines
D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …
imap: Implicit mapping and positioning in real-time
We show for the first time that a multilayer perceptron (MLP) can serve as the only scene
representation in a real-time SLAM system for a handheld RGB-D camera. Our network is …
representation in a real-time SLAM system for a handheld RGB-D camera. Our network is …
Patching open-vocabulary models by interpolating weights
Open-vocabulary models like CLIP achieve high accuracy across many image classification
tasks. However, there are still settings where their zero-shot performance is far from optimal …
tasks. However, there are still settings where their zero-shot performance is far from optimal …