A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

The rise and potential of large language model based agents: A survey

Z Xi, W Chen, X Guo, W He, Y Ding, B Hong… - arXiv preprint arXiv …, 2023 - arxiv.org
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing
the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Memory-based model editing at scale

E Mitchell, C Lin, A Bosselut… - International …, 2022 - proceedings.mlr.press
Even the largest neural networks make errors, and once-correct predictions can become
invalid as the world changes. Model editors make local updates to the behavior of base (pre …

Efficient test-time model adaptation without forgetting

S Niu, J Wu, Y Zhang, Y Chen… - International …, 2022 - proceedings.mlr.press
Test-time adaptation provides an effective means of tackling the potential distribution shift
between model training and inference, by dynamically updating the model at test time. This …

Biological underpinnings for lifelong learning machines

D Kudithipudi, M Aguilar-Simon, J Babb… - Nature Machine …, 2022 - nature.com
Biological organisms learn from interactions with their environment throughout their lifetime.
For artificial systems to successfully act and adapt in the real world, it is desirable to similarly …

imap: Implicit mapping and positioning in real-time

E Sucar, S Liu, J Ortiz… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We show for the first time that a multilayer perceptron (MLP) can serve as the only scene
representation in a real-time SLAM system for a handheld RGB-D camera. Our network is …

Patching open-vocabulary models by interpolating weights

G Ilharco, M Wortsman, SY Gadre… - Advances in …, 2022 - proceedings.neurips.cc
Open-vocabulary models like CLIP achieve high accuracy across many image classification
tasks. However, there are still settings where their zero-shot performance is far from optimal …