Computer vision for autonomous vehicles: Problems, datasets and state of the art

J Janai, F Güney, A Behl, A Geiger - Foundations and Trends® …, 2020 - nowpublishers.com
Recent years have witnessed enormous progress in AI-related fields such as computer
vision, machine learning, and autonomous vehicles. As with any rapidly growing field, it …

Multi-view stereo in the deep learning era: A comprehensive review

X Wang, C Wang, B Liu, X Zhou, L Zhang, J Zheng… - Displays, 2021 - Elsevier
Multi-view stereo infers the 3D geometry from a set of images captured from several known
positions and viewpoints. It is one of the most important components of 3D reconstruction …

Depth anything: Unleashing the power of large-scale unlabeled data

L Yang, B Kang, Z Huang, X Xu… - Proceedings of the …, 2024 - openaccess.thecvf.com
Abstract This work presents Depth Anything a highly practical solution for robust monocular
depth estimation. Without pursuing novel technical modules we aim to build a simple yet …

Iterative geometry encoding volume for stereo matching

G Xu, X Wang, X Ding, X Yang - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Recurrent All-Pairs Field Transforms (RAFT) has shown great potentials in
matching tasks. However, all-pairs correlations lack non-local geometry knowledge and …

Scannet++: A high-fidelity dataset of 3d indoor scenes

C Yeshwanth, YC Liu, M Nießner… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ScanNet++, a large-scale dataset that couples together capture of high-quality
and commodity-level geometry and color of indoor scenes. Each scene is captured with a …

Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d

Y Liao, J Xie, A Geiger - IEEE Transactions on Pattern Analysis …, 2022 - ieeexplore.ieee.org
For the last few decades, several major subfields of artificial intelligence including computer
vision, graphics, and robotics have progressed largely independently from each other …

Practical stereo matching via cascaded recurrent network with adaptive correlation

J Li, P Wang, P Xiong, T Cai, Z Yan… - Proceedings of the …, 2022 - openaccess.thecvf.com
With the advent of convolutional neural networks, stereo matching algorithms have recently
gained tremendous progress. However, it remains a great challenge to accurately extract …

Repurposing diffusion-based image generators for monocular depth estimation

B Ke, A Obukhov, S Huang, N Metzger… - Proceedings of the …, 2024 - openaccess.thecvf.com
Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth
from a single image is geometrically ill-posed and requires scene understanding so it is not …

Attention concatenation volume for accurate and efficient stereo matching

G Xu, J Cheng, P Guo, X Yang - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Stereo matching is a fundamental building block for many vision and robotics applications.
An informative and concise cost volume representation is vital for stereo matching of high …

Unifying flow, stereo and depth estimation

H Xu, J Zhang, J Cai, H Rezatofighi… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
We present a unified formulation and model for three motion and 3D perception tasks:
optical flow, rectified stereo matching and unrectified stereo depth estimation from posed …