Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances
The key elements that underpin food security require the adaptation of agricultural systems
to support productivity increases while minimizing inputs and the adverse effects of climate …
to support productivity increases while minimizing inputs and the adverse effects of climate …
Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …
provided end users with rich spectral, spatial, and temporal information. They have made a …
Unsupervised feature selection via multiple graph fusion and feature weight learning
Unsupervised feature selection attempts to select a small number of discriminative features
from original high-dimensional data and preserve the intrinsic data structure without using …
from original high-dimensional data and preserve the intrinsic data structure without using …
[PDF][PDF] 高光谱遥感影像分类研究进展
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊 - 遥感学报, 2021 - ygxb.ac.cn
随着模式识别, 机器学习, 遥感技术等相关学科领域的发展, 高光谱遥感影像分类研究取得快速
进展. 本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展, 在总结分类策略的基础 …
进展. 本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展, 在总结分类策略的基础 …
Overview and comparative study of dimensionality reduction techniques for high dimensional data
The recent developments in the modern data collection tools, techniques, and storage
capabilities are leading towards huge volume of data. The dimensions of data indicate the …
capabilities are leading towards huge volume of data. The dimensions of data indicate the …
Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
Cascaded recurrent neural networks for hyperspectral image classification
By considering the spectral signature as a sequence, recurrent neural networks (RNNs)
have been successfully used to learn discriminative features from hyperspectral images …
have been successfully used to learn discriminative features from hyperspectral images …
Learning and transferring deep joint spectral–spatial features for hyperspectral classification
Feature extraction is of significance for hyperspectral image (HSI) classification. Compared
with conventional hand-crafted feature extraction, deep learning can automatically learn …
with conventional hand-crafted feature extraction, deep learning can automatically learn …
Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
The abundant spatial and contextual information provided by the advanced remote sensing
technology has facilitated subsequent automatic interpretation of the optical remote sensing …
technology has facilitated subsequent automatic interpretation of the optical remote sensing …
Hyperspectral remote sensing data analysis and future challenges
JM Bioucas-Dias, A Plaza… - … and remote sensing …, 2013 - ieeexplore.ieee.org
Hyperspectral remote sensing technology has advanced significantly in the past two
decades. Current sensors onboard airborne and spaceborne platforms cover large areas of …
decades. Current sensors onboard airborne and spaceborne platforms cover large areas of …