Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

A survey on intelligent Internet of Things: Applications, security, privacy, and future directions

O Aouedi, TH Vu, A Sacco, DC Nguyen… - … surveys & tutorials, 2024 - ieeexplore.ieee.org
The rapid advances in the Internet of Things (IoT) have promoted a revolution in
communication technology and offered various customer services. Artificial intelligence (AI) …

A survey on modern deep neural network for traffic prediction: Trends, methods and challenges

DA Tedjopurnomo, Z Bao, B Zheng… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
In this modern era, traffic congestion has become a major source of severe negative
economic and environmental impact for urban areas worldwide. One of the most efficient …

A survey on deep learning for human mobility

M Luca, G Barlacchi, B Lepri… - ACM Computing Surveys …, 2021 - dl.acm.org
The study of human mobility is crucial due to its impact on several aspects of our society,
such as disease spreading, urban planning, well-being, pollution, and more. The …

Deep learning on traffic prediction: Methods, analysis, and future directions

X Yin, G Wu, J Wei, Y Shen, H Qi… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic
prediction can assist route planing, guide vehicle dispatching, and mitigate traffic …

Urban flow prediction from spatiotemporal data using machine learning: A survey

P Xie, T Li, J Liu, S Du, X Yang, J Zhang - Information Fusion, 2020 - Elsevier
Urban spatiotemporal flow prediction is of great importance to traffic management, land use,
public safety. This prediction task is affected by several complex and dynamic factors, such …

Bike flow prediction with multi-graph convolutional networks

D Chai, L Wang, Q Yang - Proceedings of the 26th ACM SIGSPATIAL …, 2018 - dl.acm.org
One fundamental issue in managing bike sharing systems is bike flow prediction. Due to the
hardness of predicting flow for a single station, recent research often predicts flow at cluster …

Unist: a prompt-empowered universal model for urban spatio-temporal prediction

Y Yuan, J Ding, J Feng, D Jin, Y Li - Proceedings of the 30th ACM …, 2024 - dl.acm.org
Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic
management, resource optimization, and emergence response. Despite remarkable …

Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques

J Ma, JCP Cheng, C Lin, Y Tan, J Zhang - Atmospheric Environment, 2019 - Elsevier
As air pollution becomes more and more severe, air quality prediction has become an
important approach for air pollution management and prevention. In recent years, a number …