Counterfactual explanations and algorithmic recourses for machine learning: A review

S Verma, V Boonsanong, M Hoang, K Hines… - ACM Computing …, 2024 - dl.acm.org
Machine learning plays a role in many deployed decision systems, often in ways that are
difficult or impossible to understand by human stakeholders. Explaining, in a human …

Solving the class imbalance problem using a counterfactual method for data augmentation

M Temraz, MT Keane - Machine Learning with Applications, 2022 - Elsevier
Learning from class imbalanced datasets poses challenges for many machine learning
algorithms. Many real-world domains are, by definition, class imbalanced by virtue of having …

[HTML][HTML] Explainable artificial intelligence in disaster risk management: Achievements and prospective futures

S Ghaffarian, FR Taghikhah, HR Maier - International Journal of Disaster …, 2023 - Elsevier
Disasters can have devastating impacts on communities and economies, underscoring the
urgent need for effective strategic disaster risk management (DRM). Although Artificial …

[HTML][HTML] Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning

R Maity, A Srivastava, S Sarkar, MI Khan - Applied Computing and …, 2024 - Elsevier
Abstract Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are
revolutionizing hydrology, driving significant advancements in water resource management …

Forecasting for Sustainable Dairy Produce: Enhanced Long-Term, Milk-Supply Forecasting Using k-NN for Data Augmentation, with Prefactual Explanations for XAI

E Delaney, D Greene, L Shalloo, M Lynch… - … Conference on Case …, 2022 - Springer
Accurate milk supply forecasting for the dairy sector, covering 1000 s of farms with low
resolution data, is a key challenge in achieving a sustainable, precision agriculture that can …

[HTML][HTML] Conectando el cuerpo, transhumanismo y agroecología. Mapeo científico 2000-2024 y análisis crítico

R Giraldo-Díaz, F Panesso-Jiménez - Entramado, 2024 - scielo.org.co
El objetivo esta investigación es realizar un mapeo científico basado en la teoría de grafos y
efectuar un análisis crítico de la producción científica relacionada con la temática de …

利用可信反事实的不平衡数据过采样方法.

高峰, 宋媚, 祝义 - Journal of Computer Engineering & …, 2024 - search.ebscohost.com
针对传统过采样方法不能充分利用数据集信息的缺陷, 提出一种基于反事实(counterfactual, CF)
的不平衡数据过采样方法, 并进一步对生成的少数类合成样本进行了“可信” 清除 …

[HTML][HTML] 人工智能中的类比推理研究综述

潘正华, 王勇 - 智能系统学报, 2023 - html.rhhz.net
类比推理(analogical reasoning, AR) 是人的思维中的一种基本推理形式, 是人工智能(artificial
intelligence, AI) 理论和技术研究中的一个重要领域. AI 中的类比推理研究, 旨在结合相关学科的 …

Why does that molecule smell?

A Seshadri, HA Gandhi, GP Wellawatte, AD White - 2022 - chemrxiv.org
Learning structure-scent relationships is a complex challenge due to both the large chemical
space of odorous molecules and the molecular biology of a smell. We empirically fit structure …

Flexible workflows-a constraint-and case-based approach

L Grumbach - 2023 - ubt.opus.hbz-nrw.de
Traditional workflow management systems support process participants in fulfilling business
tasks through guidance along a predefined workflow model. Flexibility has gained a lot of …