[HTML][HTML] Causal reasoning meets visual representation learning: A prospective study

Y Liu, YS Wei, H Yan, GB Li, L Lin - Machine Intelligence Research, 2022 - Springer
Visual representation learning is ubiquitous in various real-world applications, including
visual comprehension, video understanding, multi-modal analysis, human-computer …

[HTML][HTML] GPT understands, too

X Liu, Y Zheng, Z Du, M Ding, Y Qian, Z Yang, J Tang - AI Open, 2023 - Elsevier
Prompting a pretrained language model with natural language patterns has been proved
effective for natural language understanding (NLU). However, our preliminary study reveals …

Towards trustworthy and aligned machine learning: A data-centric survey with causality perspectives

H Liu, M Chaudhary, H Wang - arXiv preprint arXiv:2307.16851, 2023 - arxiv.org
The trustworthiness of machine learning has emerged as a critical topic in the field,
encompassing various applications and research areas such as robustness, security …

Long-tailed classification by keeping the good and removing the bad momentum causal effect

K Tang, J Huang, H Zhang - Advances in neural information …, 2020 - proceedings.neurips.cc
As the class size grows, maintaining a balanced dataset across many classes is challenging
because the data are long-tailed in nature; it is even impossible when the sample-of-interest …

Causal intervention for weakly-supervised semantic segmentation

D Zhang, H Zhang, J Tang… - Advances in Neural …, 2020 - proceedings.neurips.cc
We present a causal inference framework to improve Weakly-Supervised Semantic
Segmentation (WSSS). Specifically, we aim to generate better pixel-level pseudo-masks by …

Few-shot incremental learning with continually evolved classifiers

C Zhang, N Song, G Lin, Y Zheng… - Proceedings of the …, 2021 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms
that can continually learn new concepts from a few data points, without forgetting knowledge …

Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima

G Shi, J Chen, W Zhang, LM Zhan… - Advances in neural …, 2021 - proceedings.neurips.cc
This paper considers incremental few-shot learning, which requires a model to continually
recognize new categories with only a few examples provided. Our study shows that existing …

Cross-modal causal relational reasoning for event-level visual question answering

Y Liu, G Li, L Lin - IEEE Transactions on Pattern Analysis and …, 2023 - ieeexplore.ieee.org
Existing visual question answering methods often suffer from cross-modal spurious
correlations and oversimplified event-level reasoning processes that fail to capture event …

Meta-learning with task-adaptive loss function for few-shot learning

S Baik, J Choi, H Kim, D Cho, J Min… - Proceedings of the …, 2021 - openaccess.thecvf.com
In few-shot learning scenarios, the challenge is to generalize and perform well on new
unseen examples when only very few labeled examples are available for each task. Model …

Counterfactual vqa: A cause-effect look at language bias

Y Niu, K Tang, H Zhang, Z Lu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Recent VQA models may tend to rely on language bias as a shortcut and thus fail to
sufficiently learn the multi-modal knowledge from both vision and language. In this paper …