Multimodal learning with graphs

Y Ektefaie, G Dasoulas, A Noori, M Farhat… - Nature Machine …, 2023 - nature.com
Artificial intelligence for graphs has achieved remarkable success in modelling complex
systems, ranging from dynamic networks in biology to interacting particle systems in physics …

Large language models on graphs: A comprehensive survey

B Jin, G Liu, C Han, M Jiang, H Ji, J Han - arXiv preprint arXiv:2312.02783, 2023 - arxiv.org
Large language models (LLMs), such as ChatGPT and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …

Long range graph benchmark

VP Dwivedi, L Rampášek, M Galkin… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) that are based on the message passing (MP)
paradigm generally exchange information between 1-hop neighbors to build node …

Temporal graph benchmark for machine learning on temporal graphs

S Huang, F Poursafaei, J Danovitch… - Advances in …, 2024 - proceedings.neurips.cc
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …

On over-squashing in message passing neural networks: The impact of width, depth, and topology

F Di Giovanni, L Giusti, F Barbero… - International …, 2023 - proceedings.mlr.press
Abstract Message Passing Neural Networks (MPNNs) are instances of Graph Neural
Networks that leverage the graph to send messages over the edges. This inductive bias …

Graph inductive biases in transformers without message passing

L Ma, C Lin, D Lim, A Romero-Soriano… - International …, 2023 - proceedings.mlr.press
Transformers for graph data are increasingly widely studied and successful in numerous
learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous …

Drew: Dynamically rewired message passing with delay

B Gutteridge, X Dong, MM Bronstein… - International …, 2023 - proceedings.mlr.press
Message passing neural networks (MPNNs) have been shown to suffer from the
phenomenon of over-squashing that causes poor performance for tasks relying on long …

Exphormer: Sparse transformers for graphs

H Shirzad, A Velingker… - International …, 2023 - proceedings.mlr.press
Graph transformers have emerged as a promising architecture for a variety of graph learning
and representation tasks. Despite their successes, though, it remains challenging to scale …

A generalization of vit/mlp-mixer to graphs

X He, B Hooi, T Laurent, A Perold… - International …, 2023 - proceedings.mlr.press
Abstract Graph Neural Networks (GNNs) have shown great potential in the field of graph
representation learning. Standard GNNs define a local message-passing mechanism which …

Dink-net: Neural clustering on large graphs

Y Liu, K Liang, J Xia, S Zhou, X Yang… - International …, 2023 - proceedings.mlr.press
Deep graph clustering, which aims to group the nodes of a graph into disjoint clusters with
deep neural networks, has achieved promising progress in recent years. However, the …