Communication-efficient edge AI: Algorithms and systems

Y Shi, K Yang, T Jiang, J Zhang… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields,
ranging from speech processing, image classification to drug discovery. This is driven by the …

Deep convolutional neural networks for image classification: A comprehensive review

W Rawat, Z Wang - Neural computation, 2017 - ieeexplore.ieee.org
Convolutional neural networks (CNNs) have been applied to visual tasks since the late
1980s. However, despite a few scattered applications, they were dormant until the mid …

Fnet: Mixing tokens with fourier transforms

J Lee-Thorp, J Ainslie, I Eckstein, S Ontanon - arXiv preprint arXiv …, 2021 - arxiv.org
We show that Transformer encoder architectures can be sped up, with limited accuracy
costs, by replacing the self-attention sublayers with simple linear transformations that" mix" …

Binary neural networks: A survey

H Qin, R Gong, X Liu, X Bai, J Song, N Sebe - Pattern Recognition, 2020 - Elsevier
The binary neural network, largely saving the storage and computation, serves as a
promising technique for deploying deep models on resource-limited devices. However, the …

Patient knowledge distillation for bert model compression

S Sun, Y Cheng, Z Gan, J Liu - arXiv preprint arXiv:1908.09355, 2019 - arxiv.org
Pre-trained language models such as BERT have proven to be highly effective for natural
language processing (NLP) tasks. However, the high demand for computing resources in …

A survey of model compression and acceleration for deep neural networks

Y Cheng, D Wang, P Zhou, T Zhang - arXiv preprint arXiv:1710.09282, 2017 - arxiv.org
Deep neural networks (DNNs) have recently achieved great success in many visual
recognition tasks. However, existing deep neural network models are computationally …

Learning efficient object detection models with knowledge distillation

G Chen, W Choi, X Yu, T Han… - Advances in neural …, 2017 - proceedings.neurips.cc
Despite significant accuracy improvement in convolutional neural networks (CNN) based
object detectors, they often require prohibitive runtimes to process an image for real-time …

Nisp: Pruning networks using neuron importance score propagation

R Yu, A Li, CF Chen, JH Lai… - Proceedings of the …, 2018 - openaccess.thecvf.com
To reduce the significant redundancy in deep Convolutional Neural Networks (CNNs), most
existing methods prune neurons by only considering the statistics of an individual layer or …

Model compression and acceleration for deep neural networks: The principles, progress, and challenges

Y Cheng, D Wang, P Zhou… - IEEE Signal Processing …, 2018 - ieeexplore.ieee.org
In recent years, deep neural networks (DNNs) have received increased attention, have been
applied to different applications, and achieved dramatic accuracy improvements in many …

Recent advances in convolutional neural network acceleration

Q Zhang, M Zhang, T Chen, Z Sun, Y Ma, B Yu - Neurocomputing, 2019 - Elsevier
In recent years, convolutional neural networks (CNNs) have shown great performance in
various fields such as image classification, pattern recognition, and multi-media …