Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

A survey on offline reinforcement learning: Taxonomy, review, and open problems

RF Prudencio, MROA Maximo… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the widespread adoption of deep learning, reinforcement learning (RL) has
experienced a dramatic increase in popularity, scaling to previously intractable problems …

Planning with diffusion for flexible behavior synthesis

M Janner, Y Du, JB Tenenbaum, S Levine - arXiv preprint arXiv …, 2022 - arxiv.org
Model-based reinforcement learning methods often use learning only for the purpose of
estimating an approximate dynamics model, offloading the rest of the decision-making work …

Pretraining language models with human preferences

T Korbak, K Shi, A Chen, RV Bhalerao… - International …, 2023 - proceedings.mlr.press
Abstract Language models (LMs) are pretrained to imitate text from large and diverse
datasets that contain content that would violate human preferences if generated by an LM …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

Principled reinforcement learning with human feedback from pairwise or k-wise comparisons

B Zhu, M Jordan, J Jiao - International Conference on …, 2023 - proceedings.mlr.press
We provide a theoretical framework for Reinforcement Learning with Human Feedback
(RLHF). We show that when the underlying true reward is linear, under both Bradley-Terry …

Is conditional generative modeling all you need for decision-making?

A Ajay, Y Du, A Gupta, J Tenenbaum… - arXiv preprint arXiv …, 2022 - arxiv.org
Recent improvements in conditional generative modeling have made it possible to generate
high-quality images from language descriptions alone. We investigate whether these …

Offline reinforcement learning with implicit q-learning

I Kostrikov, A Nair, S Levine - arXiv preprint arXiv:2110.06169, 2021 - arxiv.org
Offline reinforcement learning requires reconciling two conflicting aims: learning a policy that
improves over the behavior policy that collected the dataset, while at the same time …

Diffusion policies as an expressive policy class for offline reinforcement learning

Z Wang, JJ Hunt, M Zhou - arXiv preprint arXiv:2208.06193, 2022 - arxiv.org
Offline reinforcement learning (RL), which aims to learn an optimal policy using a previously
collected static dataset, is an important paradigm of RL. Standard RL methods often perform …

A survey of zero-shot generalisation in deep reinforcement learning

R Kirk, A Zhang, E Grefenstette, T Rocktäschel - Journal of Artificial …, 2023 - jair.org
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …