Ai alignment: A comprehensive survey
AI alignment aims to make AI systems behave in line with human intentions and values. As
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
AI systems grow more capable, the potential large-scale risks associated with misaligned AI …
A survey of imitation learning: Algorithms, recent developments, and challenges
M Zare, PM Kebria, A Khosravi… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
In recent years, the development of robotics and artificial intelligence (AI) systems has been
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
nothing short of remarkable. As these systems continue to evolve, they are being utilized in …
Open problems and fundamental limitations of reinforcement learning from human feedback
Reinforcement learning from human feedback (RLHF) is a technique for training AI systems
to align with human goals. RLHF has emerged as the central method used to finetune state …
to align with human goals. RLHF has emerged as the central method used to finetune state …
Getting aligned on representational alignment
Biological and artificial information processing systems form representations that they can
use to categorize, reason, plan, navigate, and make decisions. How can we measure the …
use to categorize, reason, plan, navigate, and make decisions. How can we measure the …
Few-shot preference learning for human-in-the-loop rl
DJ Hejna III, D Sadigh - Conference on Robot Learning, 2023 - proceedings.mlr.press
While reinforcement learning (RL) has become a more popular approach for robotics,
designing sufficiently informative reward functions for complex tasks has proven to be …
designing sufficiently informative reward functions for complex tasks has proven to be …
Inverse preference learning: Preference-based rl without a reward function
Reward functions are difficult to design and often hard to align with human intent. Preference-
based Reinforcement Learning (RL) algorithms address these problems by learning reward …
based Reinforcement Learning (RL) algorithms address these problems by learning reward …
The effects of reward misspecification: Mapping and mitigating misaligned models
Reward hacking--where RL agents exploit gaps in misspecified reward functions--has been
widely observed, but not yet systematically studied. To understand how reward hacking …
widely observed, but not yet systematically studied. To understand how reward hacking …
A review of robot learning for manipulation: Challenges, representations, and algorithms
A key challenge in intelligent robotics is creating robots that are capable of directly
interacting with the world around them to achieve their goals. The last decade has seen …
interacting with the world around them to achieve their goals. The last decade has seen …
Contrastive prefence learning: Learning from human feedback without rl
Reinforcement Learning from Human Feedback (RLHF) has emerged as a popular
paradigm for aligning models with human intent. Typically RLHF algorithms operate in two …
paradigm for aligning models with human intent. Typically RLHF algorithms operate in two …
Interactive imitation learning in robotics: A survey
Interactive Imitation Learning in Robotics: A Survey Page 1 Interactive Imitation Learning in
Robotics: A Survey Page 2 Other titles in Foundations and Trends® in Robotics A Survey on …
Robotics: A Survey Page 2 Other titles in Foundations and Trends® in Robotics A Survey on …