[PDF][PDF] Concavity and bounds involving generalized elliptic integral of the first kind
TH Zhao, MK Wang, YM Chu - J. Math. Inequal, 2021 - files.ele-math.com
Concavity and bounds involving generalized elliptic integral of the first kind Page 1 Journal of
Mathematical Inequalities Volume 15, Number 2 (2021), 701–724 doi:10.7153/jmi-2021-15-50 …
Mathematical Inequalities Volume 15, Number 2 (2021), 701–724 doi:10.7153/jmi-2021-15-50 …
[PDF][PDF] Sharp power mean bounds for the tangent and hyperbolic sine means
TH Zhao, WM Qian, YM Chu - J. Math. Inequal, 2021 - files.ele-math.com
Mα2 (a, b)< Msinh (a, b)< Mβ2 (a, b) hold for all a, b> 0 with a= b if and only if α1⩽ 1/3, β1⩾
log 2/log (2 tan 1)≈ 0. 61007, α2⩽ 2/3 and β2⩾ log 2/log (2sinh1)≈ 0. 81109, where Mp …
log 2/log (2 tan 1)≈ 0. 61007, α2⩽ 2/3 and β2⩾ log 2/log (2sinh1)≈ 0. 81109, where Mp …
[PDF][PDF] A sharp double inequality involving generalized complete elliptic integral of the first kind
TH Zhao, MK Wang, YM Chu - AIMS Math, 2020 - aimspress.com
A sharp double inequality involving generalized complete elliptic integral of the first kind Page 1
http://www.aimspress.com/journal/Math AIMS Mathematics, 5(5): 4512–4528. DOI:10.3934/math.2020290 …
http://www.aimspress.com/journal/Math AIMS Mathematics, 5(5): 4512–4528. DOI:10.3934/math.2020290 …
Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means
TH Zhao, L Shi, YM Chu - Revista de la Real Academia de Ciencias …, 2020 - Springer
Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder
means | SpringerLink Skip to main content Advertisement SpringerLink Account Menu Find a …
means | SpringerLink Skip to main content Advertisement SpringerLink Account Menu Find a …
New weighted generalizations for differentiable exponentially convex mapping with application.
The main aim of the present paper is to present a novel approach base on the exponentially
convex function to broaden the utilization of celebrated Hermite-Hadamard type inequality …
convex function to broaden the utilization of celebrated Hermite-Hadamard type inequality …
Approximation for the complete elliptic integral of the first kind
WM Qian, ZY He, YM Chu - Revista de la Real Academia de Ciencias …, 2020 - Springer
In the article, we present several sharp upper and lower bounds for the complete elliptic
integral of the first kind in terms of inverse trigonometric and inverse hyperbolic functions. As …
integral of the first kind in terms of inverse trigonometric and inverse hyperbolic functions. As …
On new fractional integral inequalities for p-convexity within interval-valued functions
This work mainly investigates a class of convex interval-valued functions via the
Katugampola fractional integral operator. By considering the p-convexity of the interval …
Katugampola fractional integral operator. By considering the p-convexity of the interval …
[PDF][PDF] Conformable fractional integral inequalities for GG-and GA-convex function
Y Khurshid, MA Khan, YM Chu - AIMS Math, 2020 - pdfs.semanticscholar.org
Conformable fractional integral inequalities for $GG$- and $GA$-convex functions Page 1
http://www.aimspress.com/journal/Math AIMS Mathematics, 5(5): 5012–5030. DOI:10.3934/math.2020322 …
http://www.aimspress.com/journal/Math AIMS Mathematics, 5(5): 5012–5030. DOI:10.3934/math.2020322 …
Majorization theorems for strongly convex functions
S Zaheer Ullah, M Adil Khan, YM Chu - Journal of Inequalities and …, 2019 - Springer
Majorization theorems for strongly convex functions | Journal of Inequalities and Applications
Skip to main content Advertisement SpringerLink Account Menu Find a journal Publish with …
Skip to main content Advertisement SpringerLink Account Menu Find a journal Publish with …
Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean
WM Qian, ZY He, HW Zhang, YM Chu - Journal of Inequalities and …, 2019 - Springer
In the article, we prove that λ 1= 1/2+(2+ log (1+ 2))/2 1/ν− 1/2 λ_1=1/2+(2+\log(1+2))/2^1/ν-
1/2, μ 1= 1/2+ 6 ν/(12 ν) μ_1=1/2+6ν/(12ν), λ 2= 1/2+(π+ 2)/4 1/ν− 1/2 λ_2=1/2+(π+2)/4^1/ν …
1/2, μ 1= 1/2+ 6 ν/(12 ν) μ_1=1/2+6ν/(12ν), λ 2= 1/2+(π+ 2)/4 1/ν− 1/2 λ_2=1/2+(π+2)/4^1/ν …