Relative perturbation theory for diagonally dominant matrices

M Dailey, FM Dopico, Q Ye - SIAM Journal on Matrix Analysis and Applications, 2014 - SIAM
In this paper, strong relative perturbation bounds are developed for a number of linear
algebra problems involving diagonally dominant matrices. The key point is to parameterize …

Perturbation theory for factorizations of LU type through series expansions

FM Dopico, JM Molera - SIAM journal on matrix analysis and applications, 2005 - SIAM
Component-and normwise perturbation bounds for the block LU factorization and block LDL
^* factorization of Hermitian matrices are presented. We also obtain, as a consequence …

Accurate solutions of diagonally dominant tridiagonal linear systems

R Huang, J Liu, L Zhu - BIT Numerical Mathematics, 2014 - Springer
In this paper, we settle Higham's conjecture for the LU factorization of diagonally dominant
tridiagonal matrices. We establish a strong componentwise perturbation bound for the …

[HTML][HTML] Stability of block LU factorization for block tridiagonal block H-matrices

CY Wu, TZ Huang - Journal of Computational and Applied Mathematics, 2012 - Elsevier
By a block representation of LU factorization for a general matrix introduced by Amodio and
Mazzia [P. Amodio, F. Mazzia, A new approach to the backward error analysis in the LU …

Numerical Matrix Decomposition

J Lu - arXiv preprint arXiv:2107.02579, 2021 - arxiv.org
In 1954, Alston S. Householder published\textit {Principles of Numerical Analysis}, one of the
first modern treatments on matrix decomposition that favored a (block) LU decomposition-the …

[PDF][PDF] Transformaciones espectrales, funciones de Carathéodory y polinomios ortogonales en la circunferencia unidad

L Garza - 2009 - core.ac.uk
Antecedentes. La teoría de polinomios ortogonales respecto a medidas cuyo soporte se
encuentra en la recta real tiene un amplio espectro de aplicaciones, tales como integración …

[PDF][PDF] Perturbation and Error Analyses of the Partitioned LU Factorization for Block Tridiagonal Linear Systems.

CY Wu, TZ Huang - Ukrainian Mathematical Journal, 2017 - researchgate.net
We present the perturbation and backward error analyses of the partitioned LU factorization
for block tridiagonal matrices. In addition, we consider the bounds of perturbations for the …

Perturbation and error analyses of partitioned LU factorization for block tridiagonal linear systems

TZ Huang, CY Wu - Ukrains' kyi Matematychnyi Zhurnal, 2016 - umj.imath.kiev.ua
The perturbation and backward error analyses of the partitioned LU factorization for block
tridiagonal matrices are presented. Moreover, we consider the perturbation bounds for the …

[PDF][PDF] GM Bibliography

G Meurant - 2023 - gerard-meurant.fr
[16] P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of descent
methods for analytic cost functions. SIAM J. Optim., 16 (2): 531–547, 2005.[17] A. Abu-Omar …

Structured condition numbers and statistical condition estimation for the LDU factorization

M Samar, A Farooq, C Mu - Applied Mathematics-A Journal of Chinese …, 2020 - Springer
In this article, we consider the structured condition numbers for LDU, factorization by using
the modified matrix-vector approach and the differential calculus, which can be represented …