A comprehensive survey on deep learning based malware detection techniques

M Gopinath, SC Sethuraman - Computer Science Review, 2023 - Elsevier
Recent theoretical and practical studies have revealed that malware is one of the most
harmful threats to the digital world. Malware mitigation techniques have evolved over the …

Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions

IH Sarker, AI Khan, YB Abushark, F Alsolami - Mobile Networks and …, 2023 - Springer
Abstract The Internet of Things (IoT) is one of the most widely used technologies today, and
it has a significant effect on our lives in a variety of ways, including social, commercial, and …

Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEE …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

Ai-driven cybersecurity: an overview, security intelligence modeling and research directions

IH Sarker, MH Furhad, R Nowrozy - SN Computer Science, 2021 - Springer
Artificial intelligence (AI) is one of the key technologies of the Fourth Industrial Revolution (or
Industry 4.0), which can be used for the protection of Internet-connected systems from cyber …

Cybersecurity data science: an overview from machine learning perspective

IH Sarker, ASM Kayes, S Badsha, H Alqahtani… - Journal of Big …, 2020 - Springer
In a computing context, cybersecurity is undergoing massive shifts in technology and its
operations in recent days, and data science is driving the change. Extracting security …

A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …

A review of android malware detection approaches based on machine learning

K Liu, S Xu, G Xu, M Zhang, D Sun, H Liu - IEEE access, 2020 - ieeexplore.ieee.org
Android applications are developing rapidly across the mobile ecosystem, but Android
malware is also emerging in an endless stream. Many researchers have studied the …

Adversarial examples: A survey of attacks and defenses in deep learning-enabled cybersecurity systems

M Macas, C Wu, W Fuertes - Expert Systems with Applications, 2024 - Elsevier
Over the last few years, the adoption of machine learning in a wide range of domains has
been remarkable. Deep learning, in particular, has been extensively used to drive …

A survey of deep learning methods for cyber security

DS Berman, AL Buczak, JS Chavis, CL Corbett - Information, 2019 - mdpi.com
This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided …

A survey on deep learning for cybersecurity: Progress, challenges, and opportunities

M Macas, C Wu, W Fuertes - Computer Networks, 2022 - Elsevier
As the number of Internet-connected systems rises, cyber analysts find it increasingly difficult
to effectively monitor the produced volume of data, its velocity and diversity. Signature-based …