Deep learning models for solar irradiance forecasting: A comprehensive review

P Kumari, D Toshniwal - Journal of Cleaner Production, 2021 - Elsevier
The growing human population in this modern society hugely depends on the energy to
fulfill their day-to-day needs and activities. Renewable energy sources, especially solar …

A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems

TM Alabi, EI Aghimien, FD Agbajor, Z Yang, L Lu… - Renewable Energy, 2022 - Elsevier
The optimal co-planning of the integrated energy system (IES) and machine learning (ML)
application on the multivariable prediction of IES parameters have mostly been carried out …

[HTML][HTML] Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions

A Djaafari, A Ibrahim, N Bailek, K Bouchouicha… - Energy Reports, 2022 - Elsevier
Although solar energy harnessing capacity varies considerably based on the employed
solar energy technology and the meteorological conditions, accurate direct normal …

Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast

MS Hossain, H Mahmood - Ieee Access, 2020 - ieeexplore.ieee.org
In this paper, a forecasting algorithm is proposed to predict photovoltaic (PV) power
generation using a long short term memory (LSTM) neural network (NN). A synthetic …

Application of support vector machine models for forecasting solar and wind energy resources: A review

A Zendehboudi, MA Baseer, R Saidur - Journal of cleaner production, 2018 - Elsevier
Conventional fossil fuels are depleting daily due to the growing human population. Previous
research has proved that renewable energy sources, especially solar and wind, can be …

Solar photovoltaic generation forecasting methods: A review

S Sobri, S Koohi-Kamali, NA Rahim - Energy conversion and management, 2018 - Elsevier
Solar photovoltaic plants are widely integrated into most countries worldwide. Due to the
ever-growing utilization of solar photovoltaic plants, either via grid-connection or stand …

Sunshine duration measurements and predictions in Saharan Algeria region: An improved ensemble learning approach

ESM El-kenawy, A Ibrahim, N Bailek… - Theoretical and Applied …, 2022 - Springer
Sunshine duration is an important atmospheric indicator used in many agricultural,
architectural, and solar energy applications (photovoltaics, thermal systems, and passive …

A review on global solar radiation prediction with machine learning models in a comprehensive perspective

Y Zhou, Y Liu, D Wang, X Liu, Y Wang - Energy Conversion and …, 2021 - Elsevier
Global solar radiation information is the basis for many solar energy utilizations as well as
for economic and environmental considerations. However, because solar-radiation …

A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models

KS Garud, S Jayaraj, MY Lee - International Journal of Energy …, 2021 - Wiley Online Library
The uncertainty associated with modeling and performance prediction of solar photovoltaic
systems could be easily and efficiently solved by artificial intelligence techniques. During the …

Taxonomy research of artificial intelligence for deterministic solar power forecasting

H Wang, Y Liu, B Zhou, C Li, G Cao, N Voropai… - Energy Conversion and …, 2020 - Elsevier
With the world-wide deployment of solar energy for a sustainable and renewable future, the
stochastic and volatile nature of solar power pose significant challenges to the reliable …