Variational quantum algorithms
Applications such as simulating complicated quantum systems or solving large-scale linear
algebra problems are very challenging for classical computers, owing to the extremely high …
algebra problems are very challenging for classical computers, owing to the extremely high …
Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Quantum simulation of fundamental particles and forces
Key static and dynamic properties of matter—from creation in the Big Bang to evolution into
subatomic and astrophysical environments—arise from the underlying fundamental …
subatomic and astrophysical environments—arise from the underlying fundamental …
Hardware efficient quantum simulation of non-abelian gauge theories with qudits on Rydberg platforms
Non-Abelian gauge theories underlie our understanding of fundamental forces in nature,
and developing tailored quantum hardware and algorithms to simulate them is an …
and developing tailored quantum hardware and algorithms to simulate them is an …
Standard model physics and the digital quantum revolution: thoughts about the interface
Advances in isolating, controlling and entangling quantum systems are transforming what
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
Digital quantum simulation of the schwinger model and symmetry protection with trapped ions
Tracking the dynamics of physical systems in real time is a prime application of quantum
computers. Using a trapped-ion system with up to six qubits, we simulate the real-time …
computers. Using a trapped-ion system with up to six qubits, we simulate the real-time …
Solving nonlinear differential equations with differentiable quantum circuits
O Kyriienko, AE Paine, VE Elfving - Physical Review A, 2021 - APS
We propose a quantum algorithm to solve systems of nonlinear differential equations. Using
a quantum feature map encoding, we define functions as expectation values of parametrized …
a quantum feature map encoding, we define functions as expectation values of parametrized …
Variational quantum simulators based on waveguide QED
Waveguide QED simulators are analog quantum simulators made by quantum emitters
interacting with one-dimensional photonic band gap materials. One of their remarkable …
interacting with one-dimensional photonic band gap materials. One of their remarkable …
Preparations for quantum simulations of quantum chromodynamics in dimensions. I. Axial gauge
Tools necessary for quantum simulations of 1+ 1 dimensional quantum chromodynamics are
developed. When formulated in axial gauge and with two flavors of quarks, this system …
developed. When formulated in axial gauge and with two flavors of quarks, this system …
Preparations for quantum simulations of quantum chromodynamics in dimensions. II. Single-baryon -decay in real time
A framework for quantum simulations of real-time weak decays of hadrons and nuclei in a
two-flavor lattice theory in one spatial dimension is presented. A single generation of the …
two-flavor lattice theory in one spatial dimension is presented. A single generation of the …