A review of the application of deep learning in intelligent fault diagnosis of rotating machinery

Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …

[HTML][HTML] Condition monitoring using machine learning: A review of theory, applications, and recent advances

O Surucu, SA Gadsden, J Yawney - Expert Systems with Applications, 2023 - Elsevier
In modern industry, the quality of maintenance directly influences equipment's operational
uptime and efficiency. Hence, based on monitoring the condition of the machinery, predictive …

A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications

O Avci, O Abdeljaber, S Kiranyaz, M Hussein… - Mechanical systems and …, 2021 - Elsevier
Monitoring structural damage is extremely important for sustaining and preserving the
service life of civil structures. While successful monitoring provides resolute and staunch …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

Machine learning for reliability engineering and safety applications: Review of current status and future opportunities

Z Xu, JH Saleh - Reliability Engineering & System Safety, 2021 - Elsevier
Abstract Machine learning (ML) pervades an increasing number of academic disciplines and
industries. Its impact is profound, and several fields have been fundamentally altered by it …

Deep residual shrinkage networks for fault diagnosis

M Zhao, S Zhong, X Fu, B Tang… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
This article develops new deep learning methods, namely, deep residual shrinkage
networks, to improve the feature learning ability from highly noised vibration signals and …

[HTML][HTML] 1D convolutional neural networks and applications: A survey

S Kiranyaz, O Avci, O Abdeljaber, T Ince… - Mechanical systems and …, 2021 - Elsevier
During the last decade, Convolutional Neural Networks (CNNs) have become the de facto
standard for various Computer Vision and Machine Learning operations. CNNs are feed …

Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism

L Xiang, P Wang, X Yang, A Hu, H Su - Measurement, 2021 - Elsevier
The complex and changeable working environment of wind turbine often challenges the
condition monitoring and fault detection. In this paper, a new method is proposed for fault …

[HTML][HTML] Potential, challenges and future directions for deep learning in prognostics and health management applications

O Fink, Q Wang, M Svensen, P Dersin, WJ Lee… - … Applications of Artificial …, 2020 - Elsevier
Deep learning applications have been thriving over the last decade in many different
domains, including computer vision and natural language understanding. The drivers for the …

A CNN-RNN framework for crop yield prediction

S Khaki, L Wang, SV Archontoulis - Frontiers in Plant Science, 2020 - frontiersin.org
Crop yield prediction is extremely challenging due to its dependence on multiple factors
such as crop genotype, environmental factors, management practices, and their interactions …