The LLV decomposition of hyper-Kähler cohomology (the known cases and the general conjectural behavior)
Abstract Looijenga–Lunts and Verbitsky showed that the cohomology of a compact hyper-
Kähler manifold X admits a natural action by the Lie algebra so (4, b_2 (X)-2) so (4, b 2 (X) …
Kähler manifold X admits a natural action by the Lie algebra so (4, b_2 (X)-2) so (4, b 2 (X) …
Motivic decompositions for the Hilbert scheme of points of a K3 surface
A Neguţ, G Oberdieck, Q Yin - Journal für die reine und angewandte …, 2021 - degruyter.com
Motivic decompositions for the Hilbert scheme of points of a K3 surface Skip to content Should
you have institutional access? Here's how to get it ... De Gruyter € EUR - Euro £ GBP - Pound …
you have institutional access? Here's how to get it ... De Gruyter € EUR - Euro £ GBP - Pound …
Holomorphic anomaly equations for the Hilbert scheme of points of a K3 surface
G Oberdieck - Geometry & Topology, 2024 - msp.org
We conjecture that the generating series of Gromov–Witten invariants of the Hilbert schemes
of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly …
of n points on a K3 surface are quasi-Jacobi forms and satisfy a holomorphic anomaly …
On the Chow theory of projectivizations
Q Jiang - Journal of the Institute of Mathematics of Jussieu, 2023 - cambridge.org
In this paper, we prove a decomposition result for the Chow groups of projectivizations of
coherent sheaves of homological dimension. In this process, we establish the …
coherent sheaves of homological dimension. In this process, we establish the …
Gromov–Witten theory and Noether–Lefschetz theory for holomorphic-symplectic varieties
G Oberdieck - Forum of Mathematics, Sigma, 2022 - cambridge.org
We use Noether–Lefschetz theory to study the reduced Gromov–Witten invariants of a
holomorphic-symplectic variety of-type. This yields strong evidence for a new conjectural …
holomorphic-symplectic variety of-type. This yields strong evidence for a new conjectural …
The LLV decomposition of hyper-Kähler cohomology
Looijenga--Lunts and Verbitsky showed that the cohomology of a compact hyper-K\" ahler
manifold $ X $ admits a natural action by the Lie algebra $\mathfrak {so}(4, b_2 (X)-2) …
manifold $ X $ admits a natural action by the Lie algebra $\mathfrak {so}(4, b_2 (X)-2) …
On generalized Beauville decompositions
Y Bae, D Maulik, J Shen, Q Yin - arXiv preprint arXiv:2402.08861, 2024 - arxiv.org
Motivated by the Beauville decomposition of an abelian scheme and the" Perverse= Chern"
phenomenon for a compactified Jacobian fibration, we study in this paper splittings of the …
phenomenon for a compactified Jacobian fibration, we study in this paper splittings of the …
The Chow ring of hyperkähler varieties of -type via Lefschetz actions
A Kretschmer - Mathematische Zeitschrift, 2022 - Springer
We propose an explicit conjectural lift of the Neron–Severi Lie algebra of a hyperkähler
variety X of K3^ 2 K 3 2-type to the Chow ring of correspondences CH^*(X * X) CH∗(X× X) in …
variety X of K3^ 2 K 3 2-type to the Chow ring of correspondences CH^*(X * X) CH∗(X× X) in …
Lagrangian planes in hyperk\"ahler varieties of -type
G Oberdieck - arXiv preprint arXiv:2206.10288, 2022 - arxiv.org
arXiv:2206.10288v1 [math.AG] 21 Jun 2022 Page 1 arXiv:2206.10288v1 [math.AG] 21 Jun 2022
Lagrangian planes in hyperkähler varieties of K3 [n] -type Georg Oberdieck June 22, 2022 …
Lagrangian planes in hyperkähler varieties of K3 [n] -type Georg Oberdieck June 22, 2022 …
Geometry and derived categories of holomorphic symplectic manifolds
TM Beckmann - 2022 - pure.mpg.de
Geometry and derived categories of holomorphic symplectic manifolds Page 1 Geometry and
derived categories of holomorphic symplectic manifolds Dissertation zur Erlangung des …
derived categories of holomorphic symplectic manifolds Dissertation zur Erlangung des …