Understanding graph embedding methods and their applications

M Xu - SIAM Review, 2021 - SIAM
Graph analytics can lead to better quantitative understanding and control of complex
networks, but traditional methods suffer from the high computational cost and excessive …

A survey on embedding dynamic graphs

CDT Barros, MRF Mendonça, AB Vieira… - ACM Computing Surveys …, 2021 - dl.acm.org
Embedding static graphs in low-dimensional vector spaces plays a key role in network
analytics and inference, supporting applications like node classification, link prediction, and …

Temporal graph benchmark for machine learning on temporal graphs

S Huang, F Poursafaei, J Danovitch… - Advances in …, 2024 - proceedings.neurips.cc
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A survey of knowledge graph reasoning on graph types: Static, dynamic, and multi-modal

K Liang, L Meng, M Liu, Y Liu, W Tu… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on
mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research …

Learning to simulate complex physics with graph networks

A Sanchez-Gonzalez, J Godwin… - International …, 2020 - proceedings.mlr.press
Here we present a machine learning framework and model implementation that can learn to
simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and …

Temporal graph networks for deep learning on dynamic graphs

E Rossi, B Chamberlain, F Frasca, D Eynard… - arXiv preprint arXiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) have recently become increasingly popular due to their
ability to learn complex systems of relations or interactions arising in a broad spectrum of …

Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks

C Zhu, M Chen, C Fan, G Cheng… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Large knowledge graphs often grow to store temporal facts that model the dynamic relations
or interactions of entities along the timeline. Since such temporal knowledge graphs often …

Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning

H Peng, B Du, M Liu, M Liu, S Ji, S Wang, X Zhang… - Information …, 2021 - Elsevier
Exploiting deep learning techniques for traffic flow prediction has become increasingly
widespread. Most existing studies combine CNN or GCN with recurrent neural network to …

Temporally evolving graph neural network for fake news detection

C Song, K Shu, B Wu - Information Processing & Management, 2021 - Elsevier
The proliferation of fake news on social media has the probability to bring an unfavorable
impact on public opinion and social development. Many efforts have been paid to develop …