Le lemme fondamental pour les algebres de Lie
BC Ngô - Publications Mathématiques de l'IHÉS, 2010 - Springer
Dans cet article, nous proposons une démonstration pour des conjectures de Langlands,
Shelstad et Waldspurger plus connues sous le nom de lemme fondamental pour les …
Shelstad et Waldspurger plus connues sous le nom de lemme fondamental pour les …
Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale
V Lafforgue - Journal of the American Mathematical Society, 2018 - ams.org
For any reductive group $ G $ over a global function field, we use the cohomology of $ G $-
shtukas with multiple modifications and the geometric Satake equivalence to prove the …
shtukas with multiple modifications and the geometric Satake equivalence to prove the …
Existence of moduli spaces for algebraic stacks
J Alper, D Halpern-Leistner, J Heinloth - Inventiones mathematicae, 2023 - Springer
We provide necessary and sufficient conditions for when an algebraic stack admits a good
moduli space and prove a semistable reduction theorem for points of algebraic stacks …
moduli space and prove a semistable reduction theorem for points of algebraic stacks …
Topology of Hitchin systems and Hodge theory of character varieties: the case A 1
MAA de Cataldo, T Hausel, L Migliorini - Annals of Mathematics, 2012 - JSTOR
For G= GL 2, PGL 2, SL 2 we prove that the perverse filtration associated with the Hitchin
map on the rational cohomology of the moduli space of twisted G-Higgs bundles on a …
map on the rational cohomology of the moduli space of twisted G-Higgs bundles on a …
Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties
P Brosnan, TY Chow - Advances in Mathematics, 2018 - Elsevier
Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs
conjectured that the characteristic map takes the character of the dot action of the symmetric …
conjectured that the characteristic map takes the character of the dot action of the symmetric …
Torus knots and the rational DAHA
We conjecturally extract the triply graded Khovanov–Rozansky homology of the (m, n) torus
knot from the unique finite-dimensional simple representation of the rational DAHA of type A …
knot from the unique finite-dimensional simple representation of the rational DAHA of type A …
[PDF][PDF] Torsors on loop groups and the Hitchin fibration
A Bouthier, K Česnavičius - Ann. Sci. École …, 2022 - imo.universite-paris-saclay.fr
In his proof of the fundamental lemma, Ngô established the product formula for the Hitchin
fibration over the anisotropic locus. One expects this formula over the larger generically …
fibration over the anisotropic locus. One expects this formula over the larger generically …
Indecomposable vector bundles and stable Higgs bundles over smooth projective curves
O Schiffmann - annals of Mathematics, 2016 - JSTOR
We prove that the number of geometrically indecomposable vector bundles of fixed rank r
and degree d over a smooth projective curve X defined over a finite field is given by a …
and degree d over a smooth projective curve X defined over a finite field is given by a …
Geometric representations of graded and rational Cherednik algebras
A Oblomkov, Z Yun - Advances in Mathematics, 2016 - Elsevier
We provide geometric constructions of modules over the graded Cherednik algebra H ν gr
and the rational Cherednik algebra H ν rat attached to a simple algebraic group G together …
and the rational Cherednik algebra H ν rat attached to a simple algebraic group G together …
Shtukas and the Taylor expansion of -functions
Z Yun, W Zhang - Annals of Mathematics, 2017 - projecteuclid.org
Abstract We define the Heegner--Drinfeld cycle on the moduli stack of Drinfeld Shtukas of
rank two with r-modifications for an even integer r. We prove an identity between (1) the r-th …
rank two with r-modifications for an even integer r. We prove an identity between (1) the r-th …